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Abstract 

Coherent pulse train processing is most commonly used in airborne pulse Doppler radar, achieving 

adequate transmitter/receiver isolation and excellent resolution properties while inherently inducing 

ambiguities in both Doppler and range.  As first introduced by Palermo in 1962 using two conjugate LFM 

pulses, the primary nonlinear suppression (NLS) objective involves reducing range ambiguity, given the 

waveform is nominally unambiguous in Doppler, by using interpulse and intrapulse coding (pulse 

compression) to discriminate the received ambiguous pulse responses.  By introducing a nonlinear 

operation on compressed (undesired) pulse responses within individual channels, ambiguous energy levels 

are reduced in channel outputs.  The proliferation of high-speed digital signal processing capability and 

discrete code development occurring since 1962, greatly improves the feasibility of implementing NLS 

using code sets of multiple codes.  This research expands the NLS concept using discrete coding and 

processing.  A general theory is developed showing how NLS accomplishes ambiguity surface volume 

removal without requiring orthogonal coding.  Useful NLS code sets are generated using combinatorial, 

simulated annealing optimization techniques – a general algorithm is developed to extended family size, 

code length, and number of phases (polyphase coding).  An adaptive reserved code thresholding scheme is 

introduced to efficiently and effectively track the matched filter response of a target field over a wide 

dynamic range, such as normally experienced in airborne radar systems.  An evaluation model for 

characterizing NLS clutter suppression performance is developed – NLS performance is characterized 

using measured clutter data with analysis indicating the proposed technique performs relatively well even 

when large clutter cells exist. 
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NONLINEAR SUPPRESSION OF RANGE AMBIGUITY IN PULSE DOPPLER RADAR 

 

1.  Introduction 

1.1 Radar Waveforms and Doppler/Range Ambiguity 

Radar technology is broadly applied to many diverse applications, including everything from air 

traffic control, to ground mapping, to vehicular collision avoidance.  The primary focus of this research is 

airborne pulse Doppler radar.  The basic function of modern airborne radar systems is to detect targets of 

interest while estimating each target’s position and velocity.  Target characterization may be considered a 

four-dimensional problem, i.e., it includes the parametric estimation/measurement of four key parameters, 

including, range, velocity, azimuth angle, and elevation angle.  Estimation and/or measurement accuracy of 

the spacial location angles is primarily determined by radar antenna characteristics.  Range and velocity 

determination is primarily dependent upon the estimation/measurement accuracy of time delay and Doppler 

frequency, respectively.  Time delay and Doppler frequency measurements are intimately related to 

fundamental radar waveform properties and are essentially independent of angular measurements [1:209].  

Therefore, in the analysis of range and velocity measurements the angular dimensions are often 

conveniently ignored. 

Perhaps the simplest radar waveform is the continuous wave (CW) waveform.  In this case, the 

transmitter typically broadcasts a continuous sinusoid while receiving target and environmental returns on a 

separate receive antenna.  The primary advantage of CW radar is unambiguous Doppler measurement, i.e., 

each target velocity produces a single unique Doppler frequency shift of the CW carrier.  Thus, 

unambiguous Doppler measurement permits reliable target separation based solely on Doppler frequency. 

However, in CW radar target range measurements are entirely ambiguous, i.e., the continuous nature of the 

radar waveform does not permit accurate estimation of unique range information.  If initial range is known, 

the radar may track range based on range-rate.  However, initial range information is usually not available.  

Another CW radar disadvantage, perhaps even greater than the ambiguous range problem, is the need for 

separate transmit/receive antennas and problems associated with preventing transmitter leakage into the 
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receiver.  This normally prevents the use of CW radar on airborne platforms due to the increased size and 

weight associated with having multiple antennas. 

Most modern radars employ a pulsed waveform.  The primary advantage of pulsed radar over CW 

is that pulsing allows the transmitter and receiver to share the same antenna.  Figure 1-1 illustrates the 

parameters associated with a typical pulsed radar waveform.  The pulse duration, or pulse width (PW), is 

denoted as Tp and the pulse repetition interval (PRI) is denoted as Tr.  From these fundamental waveform 

parameters, several other important parameters are derived. 

 

Tp

Tr  

Figure 1-1.  Fundamental Pulsed Radar Waveform Parameters 

  

The pulse repetition frequency (PRF), denoted as fr, is the inverse of the PRI 

 1
r

r

f
T

=  . (1.1) 

Pulsed radar waveforms are normally classified as Low-PRF, Medium-PRF, or High-PRF due to PRF 

impact on range and Doppler ambiguity.  The waveform duty factor, denoted as d, is the ratio of PW to PRI 

 p

r

T
d

T
=   . (1.2) 
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The unambiguous range, denoted as Ru, is the maximum two-way range that a pulse can travel before the 

next pulse is transmitted, and is dependent upon c, the speed of light.   

 
2

r
u

cTR =   . (1.3) 

Figure 1-2 illustrates the relationship of unambiguous range to PRI.  This scenario consists of two 

fixed targets, one unambiguous at a range Ru/2 and one ambiguous at range Ru + 0.7Ru.  Identical radar 

pulses are transmitted every Tr seconds.  Within the first PRI processing interval following pulse one 

transmission, only the return from Target 1 is received and its range is unambiguously determined.  Within 

the second PRI processing interval, another return from Target 1, due to the second transmitted pulse, is 

received with exactly the same time delay as measured during the first PRI.   Shortly thereafter within the 

second PRI processing interval, a return from Target 2 due to the first transmitted pulse is received.  In this 

case, the apparent (erroneous/ambiguous) range of Target 2 is 0.7 Ru as determined during the second PRI.  

For this basic pulsed radar waveform having no intra- or interpulse coding, there is no means for the radar 

to effective resolve the range ambiguity. 

 

Range
Ru 2Ru

Target 1 Target 2

Time

Time

Tr 2Tr

Transmitted
Pulses

Received
Pulses

Target 1
Pulse 1

Target 1
Pulse 2

Target 2
Pulse 1

0.5Ru 1.7Ru

 

Figure 1-2.  Impact of Pulse Repetition on Range Ambiguities 

Low-PRF waveforms are commonly designed such that Ru exceeds the maximum detectable radar 

range, as determined by factors such as the transmitted power, antenna gain, and receiver sensitivity.   The 
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penalty incurred for achieving unambiguous range operation is a low duty cycle (corresponding to lower 

average power) and ambiguous Doppler.  The lower average power may be mitigated by raising the peak 

transmitter power, often a more practical solution for ground-based systems than airborne radars.  The 

Doppler ambiguity arises from the sampling nature of pulsed radars.  The carrier frequency Doppler shift, 

denoted as fd, as induced by a target having velocity v relative to the target 

 2
d

vf
λ

=  (1.4) 

where λ is the carrier wavelength.  For moving targets, the differential phase change between successive 

pulses, denoted as ∆φ, is given by 

 22 Rφ π
λ
∆∆ = 

 

  (1.5) 

where ∆R is the change in target range between successive pulses.  When the phase change between pulses 

exceeds 2π, the Doppler measurement becomes ambiguous [2].   

Clearly, the higher the radar PRF becomes the greater the range ambiguity.  Note that as the radar 

PRF increases, the waveform approaches a CW signal and range becomes entirely ambiguous.  However, 

high PRF radar waveforms are normally employed to ensure targets of interest are separable from clutter in 

the Doppler domain.  This is normally required for airborne radar applications where the clutter return is 

spread in both Doppler and range.  

Table 1-1.  Summary of Waveform Ambiguity Relationships 

 Low PRF Medium PRF High PRF CW 
Range Unambiguous Ambiguous Ambiguous Ambiguous 

Doppler Ambiguous Ambiguous Unambiguous Unambiguous 
 

 Table 1-1 summarizes various range/Doppler ambiguity relationships.  The actual PRF value that 

determines whether a waveform is classified as Low-, Medium- or High-PRF depends on the targets of 

interest, the carrier wavelength, the detectable range, and the nature of the clutter. 
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The most common method for resolving range and Doppler ambiguities involves using multiple 

PRFs.  This has the effect of changing the apparent target range estimated by each pulse, or pulse burst, and 

allows for some ambiguity resolution in either Doppler or range, depending on the particular application.   

1.2 Radar Waveform Fundamentals 

Two important concepts that drive radar waveform design are resolution and the radar uncertainty 

relation.  Resolution may be simply defined as the radar’s ability to separate closely spaced targets.  

Separation may be in time delay, Doppler shift, or both.  Resolution is closely related to the “narrowness” 

of signal characteristics in either the time or frequency domains.  The concept of resolution is most easily 

illustrated with a simple radar pulse as illustrated in Figure 1-3.  In this case, the pulse envelope has width 

Tp in the time domain and its corresponding frequency spectrum is found using Fourier Transform relations 

of Eq (A.2) and Eq (A.3).    

One definition of bandwidth is the main spectral lobe width, which equals 2/Tp for the simple 

radar pulse of Figure 1-3.  Thus, increasing pulse width reduces the bandwidth while decreasing pulse 

width increases the bandwidth.  A simple statement of the Radar Uncertainty Relation is that the pulse 

width and bandwidth of a waveform may not be made arbitrarily small simultaneously [3:409].   

 

t, seconds

f (Hz)

Pulse Envelope

Spectrum of Pulse Envelope

2
pT

−
2

pT
−

1

pT
−

2

pT
−

3

pT
−

1

pT
2

pT
3

pT  

Figure 1-3.  Pulse Envelope and its Magnitude Spectrum 
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The implication of the uncertainty relation is that increased resolution in the time domain results in 

decreased resolution in the frequency domain, and vice-versa.  Range resolution is closely related to pulse 

width, such that the ability to resolve closely spaced targets in range requires a short pulse.  As the pulse 

width is decreased, the amount of energy in the pulse is also decreased, thus reducing the radar detection 

range.  This is usually overcome by utilizing a technique called pulse compression.   

Pulse compression involves intentionally modulating a pulse to increase its bandwidth.  While the 

pulse energy of a compressed pulse equals that of an unmodulated long pulse, the waveform resolution 

becomes that of a short pulse upon reception and demodulation.  Many pulse compression modulation 

techniques may be employed, including, Linear Frequency Modulation (LFM), Binary Phase Shift Keying 

(BPSK), Frequency Shift Keying (FSK), and Polyphase coding.  Traditional pulse compression techniques 

involve applying identical modulation to each pulse in a pulse train.  For this research, interpulse coding is 

used extensively such that each pulse is uniquely modulated. 

A coherently transmitted set of N identical pulses may be represented by the complex signal (see 

Section A.2) 

 0

1
2

0
( ) ( )

N
j f t

t t r
n

t A t nT e πψ µ
−

=

= −∑  (1.6) 

where At is a constant amplitude for each pulse, Tr is the pulse repetition period, and f0 is the carrier 

frequency.  The complex envelope µ(t) in Eq (1.6) is given by 

 ( )( ) ( ) j tt a t e φµ =  (1.7) 

where a(t) is the amplitude modulation and φ(t) is the phase modulation.   The number of pulses N is 

dependent upon the antenna beam dwell time at a particular azimuth and elevation.  The dwell time is 

normally divided into several coherent processing intervals (CPIs).  The output of several CPIs may be 

noncoherently integrated prior to detection. 

Assuming a constant velocity, non-fluctuating point target, the received waveform is given by 

                                    0

1
2 ( ) ( )

0
( ) ( ) d d r

N
j f f t nT

r r d r
n

t A t nT e π τψ µ τ
−

+ − −

=

= − −∑  (1.8) 
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where amplitude Ar is found from the radar range equation, Eq (A.17) ,τd is the target return time delay 

(resulting from two-way propagation), and fd is the relative Doppler shift induced on the return by the target 

motion.   

The pulse modulation function chosen is dependent upon many factors.  The amplitude 

modulation a(t) establishes the pulse envelope shape.  Two prominent a(t) examples are shown in       

Figure 1-4.  The rectangular pulse function is given by 
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2( )
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2

p

pp

T
tta t rect

TT
t


≤  = =      >

 (1.9) 

where Tp is the pulse width.  The Gaussian pulse function is given by 

 

2
1
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t
Ta t e

 
 −  
 = . (1.10) 

Pulse amplitude weighting is often used to control specific pulse train characteristics, but it is not 

considered here. 
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Figure 1-4.  Rectangular (a) and Gaussian (b) Pulses 

 

Phase modulation is normally used to perform pulse compression, where a long modulated pulse is 

transmitted with bandwidth W.  Upon reception, the pulse is demodulated to form a shorter pulse having 

width 1/W, thus obtaining the energy benefits of a long pulse and the resolution benefits of a short pulse.  
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Two prominent phase modulations include Linear Frequency Modulation (LFM) and binary phase shift 

keying (BPSK).  For LFM, the phase function φ(t) is chosen to yield an instantaneous frequency that varies 

linearly with time. 

( )( )inst
d tf t b

dt
φ t= = ± . (1.11) 

This yields a phase modulation function  

  (1.12) 2( )t b tφ =

                                              or  (1.13) 2( )t bφ = − t

where b is chosen to obtain the required bandwidth.  BPSK modulation is implemented by changing the 

carrier phase by π using a binary spreading code c(t) with desirable properties:  

 

0 ( ) 1
( )

  ( ) 1

( ) 1  .

c t
t

c t

c t

φ
π

=
=  = −

= ±
 (1.14) 

Note that spreading modulation c(t) may also be applied to the amplitude modulation term yielding 

 ( ) ( ) ( )t c t a tµ =  (1.15) 

since a sign change in c(t) results in a phase shift of π.  The spreading code c(t) is composed of “chips” of 

length Tc and generally Tc << Tp.   

In either case, the goal of pulse modulation is to increase the signal time-bandwidth product (TB).  

There are many ways to define signal time duration and bandwidth.  A common method used in signal 

theory is to employ second moments, as in computing a random variable parameter [20:36] (also known as 

the radius of gyration [4:141]).  This is often useful, since in many cases the time duration and bandwidth 

are both uncertain parameters. 

The root mean square (rms) signal duration of y(t), assuming a time origin of t = 0, is defined by 

the second moment of t with respect to the complex signal [20:37] 
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∫
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Likewise, the rms bandwidth of M(f) is defined by 

 

22 2

2

2

(2 ) ( )

( )
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f M f df
W

M f df

π
∞

− ∞
∞

− ∞

=
∫

∫
 . (1.17) 

Note that both quantities are normalized with respect to signal energy and that Trms is defined in 

terms of the complex signal (including carrier), while Wrms is sufficiently defined in terms of the complex 

envelope energy density spectrum M(f) found from Eq (A.14). 

An important relation between Trms and Wrms establishes the lower limit on the time-bandwidth 

product [20:55] expressed as 

 rms rmsT W π≥  (1.18) 

where equality holds when 

 
2

2( )
k t

a t e
−

= − . (1.19) 

Thus, the waveform achieving this lower limit is a constant-carrier Gaussian pulse. 

In practice, it is common to approximate the time-bandwidth product by specifying the time 

duration and bandwidth in terms of pulse width (when the pulse width is known with certainty).  In this 

case 

 1 1p p
p

W W T
T p≈ ⇒ =  (1.20) 

where Wp is the null-null bandwidth of a rectangular pulse of duration Tp.  If the pulse is modulated a new 

quantity, called pulse compression ratio (PCR), is introduced and defined as the ratio of the transmitted 

pulse width to the compressed pulse width, or 

 p

c

T
PCR

T
=  . (1.21) 

The modulation bandwidth Wc is the null-null bandwidth of a rectangular pulse of duration Tc 

 1 1c c
c

W W T
T c≈ ⇒ = . (1.22) 
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For modulation bandwidth Wc, where Wc >> Wp, the time-bandwidth product of the transmitted 

waveform may be approximated using 

 p
c p

c

T
TB W T PCR

T
≈ = = . (1.23) 

Thus, the modulated pulse has duration Tp, a bandwidth of PCR/Tp, and a time-bandwidth product 

of PCR, facilitating a range resolution improvement of PCR. 

1.3 The Ambiguity Function 

The ambiguity function (AF) is widely used in radar waveform analysis.  It may be defined as the 

complex-valued correlation between a waveform and a time-delayed, frequency-shifted replica of that 

waveform [5:1-1].  It may also be defined as the matched-filter response in delay (τ) and Doppler (ν) 

[3:411] and as a “correlative” time-frequency representation [6].  The ambiguity function ( , )χ τ ν is 

mathematically defined in terms of a waveform’s complex envelope (or complex envelope spectrum) M(f) 

as [20:119] 

  (1.24) * 2( , ) ( ) ( ) j tt t e dπ νχ τ ν µ µ τ
∞

− ∞

≡ −∫ t

2 *( , ) ( ) ( ) j fM f M f e dfπ τχ τ ν ν
∞

− ∞

≡ −∫ . (1.25) 

Some authors actually define 2( , )χ τ ν  as the ambiguity function.  However, following [20:112], 

the term ambiguity function will be applied to the response function in general, with its actual form 

specified as needed. 

The ambiguity function has several important properties.  The maximum value of the ambiguity 

surface occurs at the origin and equals (2E)2 per 

 ( )2 2( , ) (0,0) 2Eχ τ ν χ≤ = 2  (1.26) 

and has a symmetric modulus about the origin expressed as 

 ( , ) ( , )χ τ ν χ τ ν− − = . (1.27) 
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Along the delay (τ)  axis, ( , )χ τ ν represents the autocorrelation function, while along the 

Doppler (ν) axis, ( , )χ τ ν  is proportional to the spectrum of µ2(t) 

 
2

2 *( , 0) ( ) ( )t t dtχ τ ν µ µ τ
∞

− ∞

= = −∫  (1.28) 

 
2

2 2 2( 0, ) ( ) j tt e dtπ νχ τ ν µ
∞

− ∞

= = ∫ . (1.29) 

Finally, the volume Vamb under the ambiguity surface is constant and given by 

 ( )2 2 2
ambV (d d Eχ τ ν τ ν χ

∞ ∞

−∞ −∞

= ( , ) = =∫ ∫ 0,0) 2 . (1.30) 

The ideal ambiguity function allows resolution of closely spaced targets in both delay and Doppler 

while inducing minimal “self-clutter”, i.e., interference from sidelobes.  Thus, the ideal ambiguity function, 

shown in Figure 1-5, is a two-dimensional Dirac delta function δ(τ,ν) centered at the origin. 

τ

ν

( , )χ τ ν

 

Figure 1-5.   Ideal Ambiguity Function 

However, the height and volume constraints of the ambiguity function per Eq (1.26) and Eq (1.30) 

make this ideal form unrealizable.  An approximation, known as the “thumbtack” ambiguity surface, is 

shown Figure 1-6 [3:413].  The thumbtack has a narrow central spike and a low-level pedestal surrounding 

the spike; the pedestal contains the bulk of the ambiguity volume.  Achieving a thumbtack-like ambiguity 

surface is the primary goal in radar waveform design. 
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Figure 1-6.  Thumbtack Ambiguity Surface 

 

 

To gain insight into ambiguity function characteristics for a single rectangular, sinusoidal pulse, 

Figure 1-7 is provided and shows a two-dimensional projection of the ambiguity surface for a long and 

short pulse.  Shaded areas represent the relatively large matched filter responses in the delay-Doppler plane, 

illustrating ambiguous regions that directly relate to the radar uncertainty relation.  In this case, the longer 

pulse has narrower bandwidth and better Doppler resolution in Doppler while the shorter pulse provides 

better resolution along the delay axis.  
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Figure 1-7.  AF Projection for Single Unmodulated Pulses 

Figure 1-8 shows the ambiguity projection for LFM pulse modulation.  The quadratic LFM phase 

function results in a shearing of the ambiguity function parallel to the delay axis [20:123], i.e., the axis of 

the ellipse tilts at an angle to both the delay and Doppler axes.  This results in Doppler-range cross 

coupling, which may be resolved using either a priori knowledge of range or Doppler, or multiple LFM 

modulations [2]. 
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Figure 1-8.  AF Projection for Single LFM Pulse Modulation 

The most important waveform considered for this research is the coherent pulse train.  As stated in 

Section 1.1, pulse train processing permits use of a long duration signal and provides receiver isolation.  

The long signal duration is achieved by transmitting a large number of coherent (continuous phase) pulses 
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during each antenna dwell time and coherent processing of the returns.  The ambiguity function of a 

uniform pulse train comprised of N pulses is given by [20:290] as 
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which may be rewritten as 
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where ( , )pχ τ ν  is the ambiguity function of the single pulse and all pulses in the train are identical.  Thus, 

the pulse train ambiguity function consists of a weighted superposition of component signal ambiguity 

functions translated along the delay axis by multiples of the PRI.  The induced range ambiguities due to 

pulse repetition (πnTr factor in the above equation) are clearly evident in the resultant ambiguity surface.  

Along the Doppler axis, the signal effectively stretches (from one pulse to N pulses) which produces a 

narrowing of the central peak width from approximately 1/Tp to 1/(NTr) as shown in Figure 1-9.  The 

envelope of the single pulse ambiguity function is the dashed line; the solid line is the zero-delay cut of the 

uniform pulse train ambiguity surface. 
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Figure 1-9,  Ambiguity Along the Doppler Axis for Uniform Pulse Train [20:291] 
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The volume constraint of Eq (1.30) requires that the volume removed (redistributed) from under 

the single pulse ambiguity surface, due to the PRF of the uniform pulse train, must equal the volume of the 

secondary spikes produced.  Since the central spike of the ambiguity function is the primary contributor to 

measurement accuracy, the volume redistribution improves performance by creating a “clearer” area 

around the central spike.  As N becomes larger, the ambiguity function approaches the “bed of nails” form 

shown in Figure 1-10.  If all targets of interest lie within the clear area around the central spike, the 

waveform is adequate for detection.  However, targets of interest may have ranges greater than cTr/2 and/or 

Doppler shifts greater than 1/Tr.  In this case, the range and Doppler ambiguities can cause strong target 

masking. 

 

  

τ

ν

Tr

1
Tr

1
Tr  

Figure 1-10.  Bed of Spikes Ambiguity Surface 

 

1.4 The Clutter Problem 

Clutter may be defined as any response received from object(s) other than the target of interest.  

For radars attempting to detect moving targets in the air or on the ground, the ground return is generally the 
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strongest source of clutter interference.  Stationary ground-based radars normally employ Moving Target 

Indicator (MTI) techniques to eliminate clutter [1:232].  Since the radar and ground are both stationary in 

this scenario, an MTI radar can employ clutter cancellation techniques that effectively subtract the zero-

Doppler components from successive pulses.  This method has proven to be very efficient and has been 

applied to airborne radars for subtracting mainbeam clutter.  The velocity of airborne platforms, combined 

with the radar antenna illumination pattern, induces various amounts of Doppler shift on ground returns, 

i.e., the ground return is spread in Doppler and range due to the radar antenna sidelobe characteristics.  

Figure 1-11 illustrates the geometry for an airborne intercept radar with velocity vector vp attempting to 

detect another aircraft having velocity vector vt.  

vp

vt

Mainbeam
Clutter

Sidelobe Clutter

θp

θt

vr

 

Figure 1-11.  Airborne Radar Geometry 

 

The relative target velocity with respect to the radar platform (vr) is given by Eq (1.33) and accounts for an 

induced Doppler shift given by Eq (1.34) [7].  In addition to the target return, the radar receives ground 

clutter returns from the mainbeam (in the target direction) and from the sidelobes (from all directions). 

 cos cosr t t p pθ θ= +v v v  (1.33) 

 2 r
d

vf
λ

=  . (1.34) 
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A general clutter Doppler spectrum for a single pulse radar is shown in Figure 1-12, where fdg is 

the maximum Doppler shift induced by the ground, or the maximum Doppler shift due to sidelobe clutter 

that is above the receiver noise level.  The strong peak at the carrier frequency (f0) is a zero-Doppler term, 

called the altitude return, and is due to the ground located directly below the platform (this assumes of 

course that the platform is neither ascending or descending).  As indicated, the altitude return is relative 

strong since it is generated from near-range clutter and a specular (versus diffuse) ground scattering 

response.  The stronger mainbeam clutter response is primarily due to antenna gain in the scan direction 

(the ground scattering response is generally diffuse in the mainbeam direction).   The fundamental clutter 

problem occurs when targets of interest possess Doppler returns that fall within the clutter spectrum.  For 

this reason, airborne pulsed radars generally employ specific PRFs to ensure the spectrum has a sufficiently 

large “clutter-free” region for target detection.   

Altitude
Return

Mainbeam
Clutter

f0f0-f dg f0+f dg

Sidelobe Clutter

 

Figure 1-12.  Doppler Spectrum for Single Pulse Airborne Radar 
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Figure 1-13.  High-PRF Clutter Spectrum for Pulsed Radar 

 

Figure 1-13 illustrates the clutter Doppler spectrum for a pulsed radar system and shows how the 

spectrum is periodic with a period equal to the PRF ( fr).  As fr increases, the clear region increases.  
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Although not explicitly shown, the periodic spectrum envelope is that of the single pulse spectrum; for a 

rectangular pulse the envelope spectral shape is a sinc(f) function. 

From a Doppler only processing perspective, higher PRFs allow for larger clutter-free regions.  

However, higher PRFs produce highly ambiguous range situations and result in clutter fold-over, i.e., the 

clutter responses from multiple, successive range intervals are received simultaneously.  Airborne radars 

typically resolve range ambiguities using FM ranging, PRF switching, or by adding lower PRF modes.  In 

many cases, a medium PRF is a suitable compromise between range and Doppler ambiguities. 

 

1.5 Existing Techniques for Resolving Range Ambiguities 

There are three basic techniques for resolving range ambiguities: FM Ranging, Multiple PRFs (to 

include PRF switching), and pulse coding (or pulse diversity).  Using multiple PRFs involves transmitting 

bursts of pulses and switching the PRF for each burst.  Normally, three PRFs are used [2:273], but the 

concept is easily explained with two PRFs.  Figure 1-14 illustrates two-PRF ranging [8:17.20], where the 

PRFs are selected to satisfy the following [8:17.21] 

 
PRF 1

PRF 2

u

u

n
T
m
T

=

=
 (1.35) 

where n and m are integers and Tu is a common sub-multiple of a given PRI.  The true target range is 

determined from the coincidence of received pulses.  Many techniques exist for selecting an appropriate set 

of multiple PRFs, including, the major-minor PRF method and the M:N method [2:274-277].  Likewise, 

one of many algorithms may be used to resolve the range ambiguities, including, the Chinese remainder 

theorem [8:17.20] and the residue look-up table algorithm [9]. 

The primary disadvantage of multiple PRFs is that coherent processing between multiple PRF 

bursts is not possible, reducing the overall CPI length.  Thus, using multiple PRFs is less energy-efficient 

than a single PRF.  Another problem is ghosting, i.e., false targets resulting from multiple targets and 

multiple PRFs.  Advantages for using multiple PRFs include relatively simple implementation and good 
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performance in mitigating eclipsing, i.e., target returns masked during pulse transmission (receiver 

blanking) are revealed when a different PRF is used. 
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Figure 1-14.  Two-PRF Ranging Illustration 

Linear FM is often used in range-while-search (RWS) mode to implement FM ranging [2:95].  

One example of this is implemented as follows: the processing dwell time is divided into two intervals, the 

first with no LFM and the second with LFM applied.  The target Doppler shift is measured during the first 

interval.  The return from the second interval will have a frequency shift proportional to range.  The 

difference in frequency between the two intervals allows the range to be calculated, since the frequency 

shift is proportional to range [2:95].  Ghosting also occurs with LFM so that more than two intervals are 

often used.  The basic LFM ranging limitations are achievable range resolution and additional clutter 

spreading. 

Recent work sponsored by the National Weather Service has employed interpulse coding to 

resolve range ambiguities, similar to NLS processing in many respects.  Sachidananda and Zrnic [10] 

applied a systematic code to a phase shifter, resulting in phase-coded pulses.  “Second-trip” signals are 

recovered by first “cohering”  (demodulating / matched filtering) the “first-trip” signal, an operation that 

simultaneously modulates the second-trip signal.  The first-trip signal response is then removed with a 

notch filter and the second-trip signal is restored.  By this technique, weaker signals (second-trip) overlaid 
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in range with stronger signals (first-trip) may be recovered.  This process is similar to NLS processing in 

that unwanted data is first suppressed after focusing and then the desired data is subsequently focused.  The 

major difference is that pulse Doppler weather radars do not typically encounter the clutter Doppler spread 

that is so prevalent in military airborne radar systems.   

1.6 Nonlinear Suppression (NLS) 

1.6.1 The Nonlinear Suppression Concept 

The radar nonlinear suppression technique was first introduced in a paper by Palermo, Leith, and 

Horgen [11] – an optical processor, analog LFM modulations, and a saturating nonlinearity were used to 

successfully demonstrate the NLS concept with real clutter data.  However, the processing cost at that time 

severely limited the practicality of the technique.  The current proliferation of extremely powerful digital 

signal processing (DSP) components warrants further investigation into the feasibility of implementing 

NLS at this time. 

 Pulse compression techniques using identically coded pulses are commonly applied in airborne 

radar applications.  It is intuitively satisfying to consider the idea of uniquely coding individual pulses 

(interpulse coding) such that components of received ambiguous target returns may be uniquely identified 

as being from individually transmitted pulses.  Figure 1-15 shows an example where two unique LFM pulse 

codes are used, u0(t) and u1(t), such that the FM modulation slope for u0 is orthogonal to the FM 

modulation slope for u1.  In theory, the fact that pulses have been distinctively “tagged” should reduce the 

ambiguous range by a factor of two; given the pulses are interleaved in the pulse train, each series of 

uniquely coded pulses has a PRI equal to twice the overall PRI. 
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Figure 1-15.   Interpulse Coding With Linear FM Waveforms 

The composite received waveform s(t) is applied to a receiver containing two matched filters (one 

for each unique pulse code), as shown in Figure 1-16, to produce two channel outputs, y0(t) and y1(t).  

When a u0 response is received in Channel 0, the pulse response is compressed (focused).  However, when 

u1 responses arrive in Channel 0, they are dispersed (defocused) by the matched filter due to the conjugate 

code relationship – if the codes were perfectly orthogonal there would be no output response in this case.  

However, due to imperfect code characteristics perfect defocusing does not occur and the u1 inputs may 

still produce a significant y0(t) output such that target detection occurs.   
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Figure 1-16.  Matched Filter Channels for Phase Coded Pulses 

The innovative idea introduced by Palermo in 1962 included the addition of a suppression 

operation to the traditional matched filter channels.  Consider the example in the previous section, but with 

additional processing as shown in Figure 1-17. 
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Figure 1-17.  Basic Nonlinear Suppression Processing – Two Channel Case 

In Channel 0, the received target return is first applied to a matched filter that “focuses” the 

undesired u1 pulse responses – undesired here because the goal in this channel is to produce an output y0(t) 

that is only influence by u0 pulse responses.  The nonlinearity then suppresses all signal amplitudes above 

some predetermined or adaptive threshold level.  Figure 1-18 shows two nonlinear functions used in NLS.  

The first, used by Palermo, Leith, and Horgen, is the hard limiter, which is represented by the function 

 ( ) sign( ) if 
otherwiseα

σ α σ
σ

σ
 α⋅ >

Γ = 


 (1.36) 

where alpha is a positive, real threshold.  The second nonlinear function, used in this work, is the hole-

punch function, given by 

 ( ) 0 if 
otherwise .α

σ α
σ

σ
 >

Γ = 


 (1.37) 

For complex signal processing, the threshold may be independently applied to the in-phase (I) and 

quadrature (Q) channels. 

The signal is then passed through the conjugate u1 matched filter (defocuses the remains of the u1 

response) and is applied to a matched filter for u0.  The output y0(t) consists of components from u0 pulse 

responses plus a small amount of residual content from u1 pulse responses;  the unwanted pulse responses 

in Channel 0 have been suppressed.  Channel 1 is the complement of Channel 0, where the u0 pulses are 

suppressed.  The resultant effect of the NLS receiver is that each channel has an effective PRI equal to 
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twice the original PRI, hence twice the unambiguous range.   NLS was further extended in [12], where four 

Gold codes were used to demonstrate the concept for point targets with ranges up to 4Ru.   

α
−α

σ

Γα

α
−α

σ

Γα

α
−α

σ

Γα

α
−α

σ

Γα

(a) (b)  

Figure 1-18.  Nonlinearities Used in NLS  (a) Hard Limiter  (b) Hole-Punch 

 

1.6.2 Research Objectives 

The primary goal of this research is to lay a solid foundation for future NLS research by 

accomplishing five objectives.   The first objective is to resurrect and update the NLS concept first 

introduced in 1962 by implementing with discrete coding and discrete processing.  The second objective is 

to develop a NLS theory that is consistent with other research.  Most of the related work has been focused 

on pulse diversity, primarily to improve the distribution of volume on the ambiguity surface.  The NLS 

technique proposed here is unique in its use of a suppression operator and its relationship to pulse diversity.  

Both are addressed here. 

The third objective is to determine an effective and efficient means for determining a viable 

thresholding technique for the nonlinear suppression operation.  Since NLS performance is highly 

dependent upon correct threshold determination, a reliable method for obtaining the threshold is required. 

The fourth objective is to identify and evaluate suitable discrete codes for NLS applications.  One 

of the chief limitations of the original NLS demonstration that used analog LFM waveform coding is that 

the number of available codes is limited to two.  Thus, only ambiguity reduction by a factor of two is 

achievable.  Large families of well-known discrete codes have been employed in the communications field.  

These codes are examined for applicability to the radar NLS problem and some new codes are investigated 

as well.    

The fifth objective is to evaluate radar NLS performance using real clutter.  Since it is not feasible 

to perform flight tests using an NLS compatible radar system, existing measured data is artificially 
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formatted and coded for NLS processing.  Given the limitations inherent with using existing clutter data, 

the goal of this objective is to provide “proof-of-concept” test results to ensure the proposed NLS 

architecture can suppress distributed clutter to some degree.  In this case, analog LFM NLS results are used 

as a benchmark for declaring the potential effectiveness of discrete code implementations. 

1.7 Organization 

Chapter 2 provides a review of past research on pulse diversity and introduces the newly 

developed ideal suppression operator.  An approximation to the ideal suppression operator for NLS 

applications is established in a theorem.  NLS thresholding is discussed, with two main techniques 

introduced and evaluated.  Chapter 3 provides a review of widely used radar codes and introduces some 

well-known discrete codes used in communications.  The Welch and Sarwate bounds for discrete codes are 

presented.  An evaluation of well-known binary codes is conducted, along with new codes developed using 

combinatorial optimization.  The theory of analog Brown codes, currently under development, is 

introduced for completeness.  Chapter 4 presents an NLS evaluation model for the hole-punch nonlinearity 

and NLS results are analyzed using limited measured clutter data.  Chapter 5 summarizes the research 

results and provides recommendations for future research.  Finally, two appendices are included, one to 

define matched filtering and the correlation functions widely used in this work and one providing a 

comprehensive compilation of data generated and analyzed as part of the research.
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2.  Theory of Ambiguity Suppression 

2.1 Diverse Pulse Trains 

Waveform diversity takes many forms, including PRI diversity, frequency diversity, amplitude 

diversity, and phase diversity.  Without applying some restrictions, a diverse pulse train may be made 

arbitrarily complicated.  Here, the definition of a diverse pulse train is restricted such that all pulses un(t) 

have equal amplitude and the PRI is constant.  Only the phase function fn(t) varies as indicated in,  

 ( )( ) ( ) nj t
nu t a t e φ=  (2.1) 

 
1 1

( )

0 0

( ) ( ) ( ) n r

N N
j t nT

n r r
n n

s t u t nT a t nT e φ
− −

−

= =

= − = −∑ ∑  (2.2) 

where un(t) is a unit amplitude pulse function with effective duration Tp, a(t) is an amplitude modulation 

function,  N is the number of pulses, and Tr is the PRI.   All pulses functions un(t) have equal, finite energy.  

Since all pulses in a pulse train are sequentially transmitted, they form an ordered set P, consisting of N 

members. 

 { }0 1 1, , ..., NP u u u −=  (2.3) 

 {2( )     0, 1, ..., 1nu t dt E n N
∞

− ∞

}= < ∞ ∀ ∈ −∫  (2.4) 

 ( )2( ) ,Span P L⊂  (2.5) 

where  is the space of complex Lebesque square-integrable functions of real numbers.   2 ( , )L

  (2.6) { }2 ( , ) : |  is a finite energy function defined on all of L f f= →

Some functions are restricted to subspaces of : 2 ( , )L

  (2.7) { }2 ( , ) : |  is a finite energy function defined on all of L f f= →

  (2.8) { }2 ( , ) : |  is a finite energy function defined on all of L f f+ += →

Generally, the independent variable for all functions is time (t).   
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If the amplitude modulation is Gaussian, the pulse functions are not strictly time limited, but have effective 

duration given by Eq (1.16).  Rectangular pulses are time-limited, so that the span of P is a subspace of 

L2(-Tp, Tp).  Two pulse functions un and um are orthogonal if they satisfy 

 
0  

( ) ( )
 n m

if n m
u t u t dt

E if n m

∞

− ∞

≠
=  =

∫  (2.9) 

where E is the energy of each pulse function. 

For more than four decades, pulse diversity has been principally studied as a means of reducing 

self-clutter, i.e., the undesired volume located throughout the range-Doppler ambiguity plane.  Many 

researchers have sought a means of optimizing the ambiguity surface by using pulse diversity.  Their 

objective has been volume reduction under specific regions of the ambiguity surface using only coding.  A 

somewhat promising coding technique that has periodically recurred in radar literature is based on 

complementary sequences.  First introduced by Golay in 1961 [13], complementary code pairs exhibit the 

property that the sum of their autocorrelation functions is identically zero except for the zero-shift term.  

Later extensions include quaternary codes for pulsed radar (Welti codes) and complementary sets, both of 

which possess desirable correlation characteristics beyond pair wise considerations [14].   

Sivaswamy [14] introduced subcomplementary sequences in 1978, which are complementary 

sequences applied to the repetition of a basic waveform.  For example, a series of identical linear FM 

pulses of length Tc, each multiplied by +1 or –1 according to a complementary code set, are concatenated 

together to form a larger pulse of length Tp as shown in Figure 2-1.  A binary complementary pair is 

illustrated here with the elemental linear FM pulse implied.  Sivaswamy formed complementary sequences 

using Hadamard matrices having well-known/established orthogonality properties. 

 

+ + + -+ + + - + + - ++ + - +

Tc

Tp

Tr  

Figure 2-1.  Subcomplementary Pair 
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  Sivaswamy indicates that by forming receiver channels to process subcomplementary sequences, 

self-clutter on the ambiguity surface will cancel for all shifts greater than Tc, effectively removing volume 

under the ambiguity surface using cancellation properties of complementary sequences. However, 

Sivaswamy’s claim is controversial and has not gone uncontested.  For example, Zeoli [15] shows how 

Sivaswamy’s results are invalid and no volume removal is obtained; rather, the volume thought to be 

removed is actually redistributed in Doppler. 

Gerlach and Kretschmer [16, 17] exploit orthogonal matrices and complementary sets to form 

diverse pulse trains for suppressing range ambiguities.  However, unlike Sivaswamy’s work, they restrict 

their application to stationary targets and clutter.  Thus, cancellation only takes place along the zero 

Doppler axis of the ambiguity plane. 

In 1998, Guey and Bell [18] developed a general theory for diverse pulse coding.  By considering 

the ambiguity function as a point-spread function for delay-Doppler imaging, and idealizing the radar 

system such that all pulses are transmitted simultaneously and processed independently, they established 

bounds for self-clutter suppression. 

Theorem 1 (Guey-Bell) [18: 1508].  For a set of signals {u0(t), u1(t), …, uM-1(t)} with total energy given by 

 
1 2

0

( )
M

T m
m

E u t
∞−

= − ∞

= ∑ ∫ dt  (2.10) 

and composite ambiguity function of 

 
1

0

( , ) ( , )
M

c m
m

χ τ ν χ τ ν
−

=

= ∑  (2.11) 

where 

  (2.12) 2( , ) ( ) ( ) j t
m m mu t u t e dtπ νχ τ ν τ

∞ ∗

− ∞
= −∫

defining  the volume VC  under their associated composite ambiguity function as 

 
21

0

( , )
M

C m
m

V d dχ τ ν τ ν
∞ ∞ −

=− ∞ − ∞

= ∑∫ ∫  (2.13)  

then, volume VC satisfies 

 
2

2T
C T

E V E
M

≤ ≤   . (2.14) 
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Furthermore, the minimum is achieved when {u0(t), u1(t), …, uM-1(t)} is a set of equal-energy 

orthogonal signals. 

Hlawatsch [6:181] subsequently proved the Guey-Bell Theorem using the ambiguity function of a 

linear signal space.  Both Guey-Bell and Hlawatsch assume an idealized radar system is used such that each 

um(t) is independently transmitted, received, and processed before forming the composite ambiguity 

function.  The time multiplexing inherent in the diverse pulse train of Eq (2.2) results in “range-walk” 

[6:178] as caused by target (and clutter) motion.  If orthogonal phase coding is used to achieve the lower 

bound of Eq (2.14), Doppler compensation is required prior to forming the composite ambiguity function 

[18:1520].   

Orthogonal codes, such as obtained from Hadamard matrices, are extremely sensitive to time and 

frequency variation and their use is usually restricted to systems  capable of achieving high levels of 

synchronization.  For example, the IS-95 digital cellular standard uses an orthogonal Walsh covering on the 

forward link (base-to-mobile) to enable multiple access capability [19:539].  Where near perfect 

synchronization is impractical, as with the mobile-to-base link of cellular systems, codes are chosen with 

good cross-correlation (dispersion) properties to enhance multiple access performance.  Except for limited 

target environments, such as the stationary clutter scenario used by Gerlach and Kretschmer [17], the return 

from a diverse pulse train is inherently asynchronous and it is very unlikely that coding alone can achieve 

acceptable ambiguity suppression [15].  For this reason, this work introduces a suppression operator that, 

when combined with non-orthogonal diverse coding, results in a composite ambiguity function with 

volume approaching the Guey-Bell lower bound of Eq (2.14). 

It is instructive to compare ambiguity functions of the uniform (Section 1.3) and diverse pulse 

trains.  The uniform pulse train ambiguity function is repeated here as 

  (2.15) 
( )

* 2

1 1
2

0
0 0

( , ) ( ) ( )

            [ ] ,   .r

j t
s

N N
j nT

r
n m

s t s t e dt

e n m T

π ν

π ν

χ τ ν τ

χ τ ν

∞

− ∞

− −

= =

= −

= − −

∫

∑ ∑

The reoccurring pulse ambiguity function χ0 at multiples of Tr is evident in Eq (2.15), as is the Doppler 

sampling effect induced by the exp(j2πνnTr) term.  It is desirable to suppress these “surfaces” centered at 

τ ≠ 0 which may be accomplished using a two-fold process.  First, pulse diversity may be introduced to 
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reduce the pulse train periodicity.   Most importantly, this diversity makes each pulse distinct.  For the 

diverse pulse train of Eq (2.2), the ambiguity function is 

 

1
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0

1 1
2

,
1 0

1 1
2 ( )

,
1 0

( , )  ( , )

                    ( , ) 

                    ( , ) .

r
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= =
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= =
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∑

∑ ∑
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 (2.16) 

The separation of auto-ambiguity terms, only appearing at τ = 0, and cross-ambiguity terms, 

appearing at multiples of Tr , is the most distinctive feature of the diverse-pulse ambiguity function.  This 

separation allows immediate identification of cross-ambiguity terms that represent range ambiguities that 

need to be suppressed. 

The first summation term in Eq (2.16) represents a superposition of component ambiguity 

functions weighted by phase factor exp(j2πνnTr).  Per Guey and Bell, this is called the “weighted 

composite ambiguity function” and denoted ( , )cχ τ ν .  

 
1

2

0
( , )  ( , )r

N
j nT

c n
n

e π νχ τ ν χ τ ν
−

=

= ∑   . (2.17) 

It is reasonable to assume all pulses have equal energy with the same effective duration and bandwidth.  In 

this case, ( , )cχ τ ν can be approximated as [20:328] 

 
1

2

0
( , ) ( , ) r

N
j nT

c n
n

e π νχ τ ν χ τ ν
−

=

≅ ∑  . (2.18) 

Equation (2.18) shows that near the origin (τ = 0, ν = 0), waveform coding does not affect the fine 

structure of the ambiguity surface when compared to the uniform pulse train. As Rihaczek [20:328] points 

out, the spreading of ambiguous surfaces resulting from cross-ambiguity terms of Eq (2.16) is a similar 

effect produced by PRI staggering.  Since the later technique is much more easily implemented, the benefit 

of using pulse diversity to reduce pulse train periodicity appears questionable.  However, as demonstrated 

in Section 1.2, the ability to distinguish pulses from one another when using pulse diversity allows greater 

suppression of range ambiguities. 
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2.2 The Ideal Suppression Operator 

Given the diverse pulse train of Eq (2.2) with an ambiguity function expressed by Eq (2.16), the 

question arises:  how can the undesirable cross-ambiguity terms be totally suppressed while retaining the 

desirable auto-ambiguity term?  If the cross-ambiguity terms of Eq (2.16) can be suppressed, the system 

output merely becomes the weighted composite ambiguity function of Eq (2.17).  A conventional radar 

receiver employing matched filter detection may be considered optimal (in terms of output signal-to-noise 

ratio) when operating over an additive white Gaussian noise channel.  Normally, the ambiguity function is 

interpreted as the matched filter response to a received waveform with variable time-delay and Doppler.  

To suppress range ambiguities induced by diverse pulse train processing, the basic matched filter receiver 

structure is expanded to include a suppression operation.  Consequently, the “suppressed ambiguity 

function”, denoted by sχ ′ , is defined as the suppression receiver response and varies as a function of 

received signal time-delay and Doppler; ideally, the desired response is the auto-ambiguity term of  

Eq (2.16) with the cross-ambiguity terms totally suppressed.  Therefore, the suppressed ambiguity function 

is simply the weighted composite ambiguity function 

  (2.19) 
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              .
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=

∞−

= − ∞

′ =

=

= − − −

∑

∑ ∫

To achieve this response, the “ideal suppression operator” (ISO) Λn is introduced [21], with the 

primary property that if 

 
1

0

( ) ( )
N

k k k
k

s t a u t τ
−

=

= −∑   (2.20) 

then 

 ( ) ( )n n ns t a u t nτ Λ = −  . (2.21) 

Applying Eq (2.21) to Eq (2.19) yields 
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where the ideal suppression operator has been applied to pulse train s(t) to yield the individual pulse 

functions un . 

The delay associated with each pulse may be expressed using the operator Dk 

 [ ]( ) ( )k k k kD u t u t τ= −  (2.23) 

so that Eq (2.20) may be rewritten as 

 [ ]
1

0

( ) ( )
N

k k k
k

s t a D u
−

=

= ∑ t . (2.24) 

 

Definition 1 (Ideal Suppression Operator).  Let s(t) be a linear combination of N non-orthogonal 

complex pulse functions uk(t) from an ordered set P = {u0,u1,…uN-1} each weighted by a complex constant 

ak and with delay operator Dk 
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( ) ( )
N

k k k
k

s t a D u
−

=

t
 

=  
 
∑   .            (2.25) 

For each n ∈ {0,1…,N-1}, the nth ideal suppression operator (ISO),  Λn ,  is defined such that Λn “selects” 

un  from s 
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( ) ( ) ( )
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n n k k k n n
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s t a D u t a u t nτ
−

=

 
 Λ = Λ = −  

 
∑ . (2.26) 

 

From the ISO definition, the following properties may be established 

(1)  Λn is a linear operator on L2 ( ).  Let 2:n LΛ → 2L

  (2.27) 
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1
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∑

Note that the delay values may be different for each pulse train.  Define delay operators Dk and ∆k by 

  (2.28) 
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 (2.29) 

Thus, the ISO is linear on P. 

(2)  Λn is idempotent.  That is, Λn is a projector.   

 

2 ( ) ( )

             ( )

              ( )

              ( )  .

n n n

n n n n

n n n

n

s t s t

a D u t

a u t

s t

τ

   Λ = Λ Λ   
 = Λ 

= −

 = Λ 

 (2.30) 

From this property, it is evident that Λn is a projector and [ ]nsΛ  is a projection from the span of P to the 

one-dimensional space spanned by un.   

A receiver architecture for forming the weighted composite ambiguity function is shown in  

Figure 2-2.  In this figure, and all subsequent figures, an element with a single-line border represents the 

convolution operator, and double-lined elements represent direct operators.  The h0, h1, . . . hM-1 convolution 

operators in the figure represent matched filters designed for optimal response to each of the distinctly 

encoded pulses of the pulse diverse waveform.  The matched filter is defined by Eq (A.40) in Appendix A.  

Summing the matched filter outputs forms the desired weighted composite ambiguity function.  The 

matched filter inputs are the result of applying an ISO and a delay operator with delay nTr, where n 

corresponds to the pulse function.  As will become apparent with Nonlinear Suppression (NLS), the process 

of applying the ISO and subsequent matched filtering, may be considered equivalent to designing a  

“channel” specifically tailored for optimally processing the single pulse response that is not being 

suppressed. 
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Figure 2-2.  Receiver Architecture for Forming the Weighted Composite Ambiguity Function 

 

2.3 Nonlinear Suppression Operator 

The ideal suppression operator is a useful concept for introducing the general idea of suppression 

operators.  By assuming ideal suppression, limits on range ambiguity removal/suppression can be 

established.  It is also shown that introduction of the ISO achieves the lower bound on achievable 

ambiguity volume.   

However, there is no existing technique for implementing a linear projection such as the ISO for a 

non-orthogonal pulse set when the time-delay and Doppler are unknown.  In fact, these are the typical 

parameters to be estimated.  A common receiver structure for either detecting targets and/or estimating the 

time-delay and Doppler uses using a bank of matched filters.  In this case, each matched filter in the bank is 

“tuned” to a specific combination of time-delay and Doppler. 

For the case involving a non-ideal suppression operator Λn, i.e., the cross-ambiguity terms in 

Eq (2.16) are not entirely suppressed, the resultant non-ideal suppression operation may be expressed as 

 
1

0
( ) ( ) ( )

N

n n n n
m
m n

ms t u t u
−

=
≠

     Λ = Λ + Λ     ∑ t  . (2.31) 

The first term in Eq (2.31) represents distortion of un caused by the non-ideal suppression operator 

and the second term is the residual ambiguity.  Each of these factors is addressed in detail in Section 2.3.3.   

The NLS technique proposed and developed under this work may be considered an approximate 
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implementation for ideal suppression.  As shown in the next section, NLS performance asymptotically 

approaches ideal suppression performance as the integrated sidelobe levels of autocorrelation function of 

the pulses in the diverse pulse train approach zero. 

2.3.1 Nonlinear Suppression Fundamentals 

Due to NLS complexity, it is helpful to define two nonlinear operations that form the basic 

elements of NLS receiver channels.   

The first nonlinear operation is the hole punch operator, which is basic nonlinearity used in this 

work to perform suppression. 

Definition 2 (Hole Punch Operator).  Let s be a complex function, 2 ( , )s L∈ , and let α be a real, 

positive function, .  The Hole Punch Operator is defined as the nonlinear operator Γ2 ( , )Lα +∈ α that 

attenuates all values of s(t) with magnitude greater than α(t) to zero 

 
0 if  ( ) ( )

( )  
( ) otherwise   .       

s t
s t

s tα

α
 Γ =  



t>
 (2.32) 

The real function α is known as the threshold, and is determined uniquely every time the hole 

punch operator is applied.  

Definition 3 (Elemental Suppression Operator).  Let u be a complex pulse function,, u L ,and 

let h be the filter matched to complex pulse function u  

2 ( , )∈

 *( ) ( )h t u t= −  . (2.33) 

The matched filter h is uniquely determined by u, and 2 ( , )h L∈ .  Let s be a complex function, 

.  Define the Elemental Suppression Operator 

 by 

2 ( , )s L∈

: ( ,u 1 2 1 2) ( , ) ( , ) ( , )L L L LΘ ∩ → ∩

 [ ]( ) ( ) ( )u s t s h uα t Θ = Γ ∗ ∗   . (2.34) 
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The elemental suppression operator, uΘ , is uniquely determined by the pulse function u.  Since 

the pulse train consists of the summation of multiple pulse functions un, the notation used to distinguish 

elemental suppression operators is . 
mm uΘ = Θ

 [ ]( ) ( ) ( ) ( )
mm u m ms t s t s h uα  t Θ = Θ = Γ ∗ ∗    . (2.35) 

Figure 2-3 graphically depicts the elemental suppression operator. 

hm umΓα

Θm  

Figure 2-3.  Elemental Suppression Operator 

The elemental suppression operator is the core element of every NLS channel.  Its purpose is to 1) 

“focus” the desired received pulse component while spreading other pulses in time, 2) “hole-punch” the 

focused data which should have much greater amplitude than the average, and 3) reverse the time-spread 

response of other pulses.  Ideally, each NLS channel uses an elemental suppression operator to suppress all 

undesired pulses without significantly attenuating the desired pulse associated with that channel. 

Although thresholding is discussed in detail in Section 2.3.4, the concept of the dispersed envelope 

threshold is introduced here to illustrate how NLS approximates the ISO performance.  To illustrate how 

thresholds may be determined, consider the situation depicted in Figure 2-4.  Here, a length 255 binary 

phase coded waveform is used and three point target returns are received from ranges of Ru/4, 3Ru/2, and 

11Ru/4.  Each target response is coded with one of three distinct phase codes, u3, u2, and u1, respectively.  

When filtered by h1, a filter matched to u1, the filter output consists of cross-correlation components from 

targets #1 and #2 plus an autocorrelation component due to u1 from target #3.  Thus, the target #3 response 

is “focused” while responses from targets #1 and #2 are simultaneous “defocused.”  To suppress the 

focused response from target #3, a threshold is set such that the dispersed responses are not suppressed 

while the peak autocorrelation response is suppressed.  For the case illustrated in Figure 2-4, either constant 

threshold α1 (dot-dashed line) or variable threshold α2 (dashed line) will work effectively, i.e., applying the 
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nonlinear hole punch operation of Eq 2-16 suppresses the focused peak.   Any threshold lying above the 

envelope of the dispersed codes and below any focused peaks is called the dispersed envelope threshold 

(DET).  Although the DET may not be optimal in all cases, it intuitively has the least destructive effect on 

the desired signal (since it only suppresses focused pulse responses).  It also provides some advantages in 

developing a useful theory relating NLS to ideal suppression. 
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Figure 2-4.  Dispersed Envelope Threshold Selection 

When a diverse pulse train as defined by Eq (2.2) is applied to a matched filter hm, which is matched to 

pulse code um, the response will consist of both a focused response and a dispersed response.  Since 

matched filtering is equivalent to correlation, the focused (autocorrelation) response occurs when n = m 

  . (2.36) ( ) ( ) ( ) ( ) ( )n m n n nnu t h t u t h t R t∗∗ = ∗ =

The dispersed (crosscorrelation) response occurs when n ≠ m 

  u t  . (2.37) ( ) ( ) ( )n m nmh t R t∗∗ =

Using these terms, the dispersed envelope threshold may be defined. 

Definition 4 (Dispersed Envelope Threshold).  Let s be a signal consisting of a superposition of uniquely 

coded pulses from the ordered set P={u0,u1, …, uN-1}, with arbitrary time delay and amplitude. 

  [ ]
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0
( ) ( )

N

n n n
n

s t a D u
−

=

= ∑ t . (2.38) 
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Let hm be the matched filter for pulse code um.  Define the Dispersed Envelope Threshold (DET) as the real, 

positive function α, , with the properties 2 ( , )Lα +∈

 [ ]
1

0
( ) ( )     

N

n n n m
n
n m

t a D u h tα
−

=
≠

≥ ∗∑ t∀  (2.39) 

  [ ]( )α max ( )    m m m mt
t a D u h t

− ∞ < < ∞
t< ∗ ∀  . (2.40) 

Thus the value dispersed envelope threshold exceeds the dispersed response for all t and is less than the 

focused response for all t (α2 in Figure 2-4). 

While the DET definition does not indicate how to generate it (presuming target locations 

unknown), it does help define what is required to achieve a particular operating condition.  Under ideal 

DET conditions, only the unwanted focused pulse responses are suppressed by the nonlinearity while the 

desired dispersed pulse responses remain unaffected.  Section 2.3.4 provides information on dispersed 

envelope selection for the special case of point targets. 

2.3.2 Nonlinear Suppression Receiver Channel Structure 

Each NLS receiver channel is formed using a sequence of elemental suppression operators 

followed by a matched filter for that particular channel.  Figure 2-5 is an NLS receiver for Channel 0 which 

suppresses all pulse responses except for those due to code u0.  As indicated, the sequence of elemental 

suppression operators approximates the ideal suppression operator Λ0.   

The ordering of elemental suppression operators within an NLS receiver channel is determined 

based on the following.  Since the power returned from each target is a function of range (R) and varies as 

1/R4, the target response with the greatest amplitude is assumed to correspond to the most recently 

transmitted pulse.  This is not always true since targets with larger radar cross-sections at longer ranges 

may produce the stronger returns.  However, given target parameters are generally unknown, the ordering 

of suppression based on range is the best use of available information.  By suppressing larger responses 

first, the cross-correlation levels are reduced in subsequent processing stages.  This may be most significant 

when targets are overlaid in range.  Note that the NLS channel structure does remain constant for every 

PRI.  In fact, elemental ordering must be reconfigured for every PRI based on the most recently transmitted 
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pulse.  The channel configuration presented in Figure 2-5 assumes u0 was the most recently transmitted 

pulse.  

ΘM-1 ΘM-2 Θ1 h0

Approximate Λ0  

Figure 2-5.  NLS Receiver Channel Structure, Channel 0 

 

Definition 5 (Nonlinear Suppression Channel).  Let u0, u1, …, uM-1 be a sequence of transmitted pulses.  

Let uq be the most recently transmitted pulse.  The Nonlinear Suppression Channel for pulse n is defined as 

a sequence of elemental suppression operators Θq, Θq-1,… Θ0,ΘM-1,…,Θn+1, Θn-1,…,Θq+1, excluding Θn, 

sequentially applied to the input signal and subsequently followed by matched filter hn. 

Figure 2-6 illustrates the NLS multi-channel receiver structure for the case when u0 is the most recently 

transmitted pulse.  The suppressed channel outputs may be utilized in a number of ways.  For example, by 

adding delay operators as depicted in Figure 2-2, the weighted composite ambiguity function may be 

formed and Doppler processing may be applied for integration.  For point targets, this operation will 

successfully resolve range ambiguities if the level of suppression is sufficient (a function of the pulse time-

bandwidth product).  In most practical applications, the number of codes (M) will be much lower than the 

number of transmitted pulses in a CPI (N).  Doppler processing may be performed prior to the NLS 

operation on a block of N/M pulses to reduce the clutter cell size; NLS processing will subsequently follow. 
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.

 

Figure 2-6.  NLS Multi-Channel Receiver Structure 

 

2.3.3 Distortion and Residual Ambiguity Effects 

When suppression is not ideal, as with NLS, Eq (2.31) applies and may be analyzed to determine 

distortion and residual ambiguity effects.  It is instructive to first consider the two-pulse case (M = 2).  Let 

u0 and u1 be pulse functions with autocorrelation functions R00(τ) and R11(τ), and cross-correlation function 

R01(τ).  Let 0 1( ) ( ) ( )rs t u t u t T= + −  be the input signal to the two channel NLS receiver. 

If DET is used, as given by Definition 4, only the autocorrelation peak is suppressed.  Let Qnn(τ) 

be the result of suppression when DET is employed 

Definition 6 (Suppressed Autocorrelation Function).  Let Rnn (τ) be the autocorrelation of un.  The 

Suppressed Autocorrelation Function Qnn (τ) is defined as the result of the hole-punch operator applied to 

the convolution of un and its matched filter hn when a dispersed envelope threshold is used.  That is, Qnn(τ) 

is equal to zero for |τ| ≤ τm, where τm is the location of the mainlobe null and equal to Rnn(τ) for all other 

values of τ 

 ( ) 0       if    
( ) ( )

( ) otherwise  .  
m

nn n n
nn

Q u h
Rα

τ τ
τ τ

τ
 ≤ = Γ ∗ =   

 (2.41) 
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From (A.25) the autocorrelation function of pulse functions with duration Tp is nonzero only for 

values of τ in the closed interval [ , ]p pT T−

,

.   Since all pulse functions of interest are bounded and 

piecewise continuous, the autocorrelation function, Rnn(τ), is also bounded and piecewise continuous.  

From Definition 6, it is clear that the suppressed autocorrelation function, Qnn(τ), is bounded and piecewise 

continuous on the closed interval [ ]p pT T−

]

, with a two discontinuities at τ = ± τm.  Therefore, Qnn(τ) is 

Riemann-integrable on [ ,p pT T− .  Since Qnn(τ) only contains autocorrelation sidelobes, the Integrated 

Sidelobe Level (ISL) of Rnn(τ) can be defined as the integral of the modulus squared of Qnn(τ), divided by 

the peak response squared.  The ISL is a common metric for assessing pulse code performance [22:537] 

and plays an important role in assessing the NLS performance of this work. 

Definition 7 (Integrated Sidelobe Level).  Let un(t) be a discrete complex pulse function of duration T, 

with autocorrelation function Rnn(τ) and suppressed autocorrelation function Qnn(τ).  The Integrated 

Sidelobe Level (ISL) of un is defined as the integral of |Qnn(τ)|2 divided by the square of the peak response 

  

2

2

( )
( )

( 0)

T

nn
T

n
nn

Q d
u

R
ISL

τ τ

τ
=

=

∫
−  (2.42) 

Using Eq (A.45), the Channel 0 output is given by 

  (2.43) 

( )0 0 1 1 1 1 0

*
0 1 1 0 11 1 0

* * *
0 1 1 0 11 1 0

* * * *
00 11 11 10

( ) ( )

        ( ) ( ) ( ) ( ) ( ) ( ) ( )

        ( ) ( ) ( ) ( ) ( ) ( ) ( )

        ( ) ( ) ( ) ( )  

rT

r

r

r

y t u h D u h u h t

u t h t u t h t Q t T u t h t

u t u t u t u t Q t T u t u t

R t R t Q t T R t

α
  = Γ ∗ + ∗ ∗ ∗  

= ∗ ∗ ∗ + − ∗ ∗

= ∗ − ∗ ∗ − + − ∗ ∗ −

= ∗ + − ∗ .

*

*

Using Eq (A.46), the Channel 1 output is given by 

  (2.44) 

( )1 0 0 1 0 0 1

*
1 0 0 1 00 0 1

* * *
1 0 0 1 00 0 1

* * * *
11 00 00 01

( ) ( )

        ( ) ( ) ( ) ( ) ( ) ( ) ( )

        ( ) ( ) ( ) ( ) ( ) ( ) ( )

        ( ) ( ) ( ) ( ) 

rT

r

r

r r

y t u h D u h u h t

u t T h t u t h t Q t u t h t

u t T u t u t u t Q t u t u t

R t T R t Q t R t

α
  = Γ ∗ + ∗ ∗ ∗  

= − ∗ ∗ ∗ + ∗ ∗

= − ∗ − ∗ ∗ − + ∗ ∗ −

= − ∗ + ∗  .

For each of these equations, the first term of the final expression represents the distorted autocorrelation 

function of the desired pulse, and the second term is the residual ambiguity. 
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Extension beyond two pulses requires implementation of a multi-channel receiver structure as 

shown in Figure 2-6.  To illustrate, consider the case when M = 4 as shown in Figure 2-7.  For this analysis, 

assume the received waveform is given by 

 0 1 2 3( ) ( ) ( ) ( 2 ) ( 3 )r r rs t u t u t T u t T u t T= + − + − + −  . (2.45) 

Since all pulses are equal amplitude in this case, the order of processing is unimportant. 

h0 Γα u0 Γα u3 h2 Γα u2 h1 y1 (t)s (t) h3

h3 Γα u3 Γα u2 h1 Γα u1 h0 y0 (t)s (t) h2

h1 Γα u1 Γα u0 h3 Γα u3 h2 y2 (t)s (t) h0

h2 Γα u2 Γα u1 h0 Γα u0 h3 y3 (t)s (t) h1

Channel 0

Channel 1

Channel 2

Channel 3

 

Figure 2-7.  Four-Channel NLS Processor 

 

Assuming DET, the Channel 0 output is given by 

 ( )( )0 0 1 1 2 2 3 3( ) ( )y t h u h u h u h s tα α α
  = ∗ ∗Γ ∗ ∗Γ ∗ ∗Γ ∗     . (2.46) 

Note that although the hole punch operator Γα is repeatedly applied, each occurrence of it 

uses a unique α that is assumed to be DET.  Let the delay operator Dn be given by 

  (2.47) ( ) ( ) for any signal n rD a t a t nT s  = − 

then [ ]0 1 1 2 2 3 3( ) ( )s t u D u D u D u= + + + t   . (2.48) 

When the ideal DET is used, the hole punch operator only suppresses the focused response, 

while leaving the dispersed response intact.  Employing the definitions of the suppressed autocorrelation 
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function and the hole-punch nonlinearity, the result of applying the hole punch to a pulse function is given 

by 

  (2.49) [ ]
*

*

( ) if 
( )

( ) if   .
nm

n m
nn

R t n m
u h t

Q t n mα

 ≠Γ = 
=

Beginning with the first hole punch operator and working through Eq (2.46), results in 

  (2.50) ( ) *
3 3 0 3 1 1 3 2 2 3h s h u h D u h D u D QαΓ ∗ = ∗ + ∗ + ∗ + 33

 
( ) ( )

( )
2 3 3 2 3 3 0 1 1

*
3 3 2 22 2 3 33                                      

h u h s h u h u D u

u h D Q h D Q

α α Γ ∗ ∗Γ ∗ = ∗ ∗ ∗ + 

+ ∗ ∗ + ∗ *

0

 (2.51) 

  (2.52) 

( )( )1 2 2 3 3 1 2 2 3 3

*
2 2 3 3 1 11

1 2 3 3 2 2

                                                            

                                                            

h u h u h s h u h u h u

u h u h D Q

h u u h D Q

α α α Γ ∗ ∗Γ ∗ ∗Γ ∗ = ∗ ∗ ∗ ∗ ∗ 

+ ∗ ∗ ∗ ∗

+ ∗ ∗ ∗ ∗ *
2

*
1 2 3 2 3 33                                                            h u u h D Q+ ∗ ∗ ∗ ∗

 

( )( )0 1 1 2 2 3 3 0 1 1 2 2 3 3 0

*
0 1 2 2 3 3 1 11                                                                         

                                              

h u h u h u h s h u h u h u h u

h u u h u h D Q

α α α∗ ∗Γ ∗ ∗Γ ∗ ∗Γ ∗ = ∗ ∗ ∗ ∗ ∗ ∗ ∗  

+ ∗ ∗ ∗ ∗ ∗ ∗
*

0 1 1 2 3 3 2 22

*
0 1 1 2 3 2 3 33

                           

                                                                         

                                                  

h u h u u h D Q

h u h u u h D Q

+ ∗ ∗ ∗ ∗ ∗ ∗

+ ∗ ∗ ∗ ∗ ∗ ∗
* * * *
00 11 22 33

* * * *
10 22 33 1 11

                     * * *

                                                                         * * *

                                                                

R R R R

R R R D Q

=

+
* * * *
20 11 33 2 22

* * * *
30 11 22 3 33

         * * *

                                                                         * * *

R R R D Q

R R R D Q

+

+

 (2.53) 

  (2.54) 
* * * * * * * *

0 00 11 22 33 10 22 33 11

* * * * * * * *
20 11 33 22 30 11 22 33

( ) ( )* ( )* ( )* ( ) ( )* ( )* ( )* ( )

         ( )* ( )* ( )* ( 2 ) ( )* ( )* ( )* ( 3 )  .
r

r r

y t R t R t R t R t R t R t R t Q t T

R t R t R t Q t T R t R t R t Q t T

= +

+ − +

−

−

−

−

−

Applying the same procedure to each NLS channel results in 

  (2.55) 
* * * * * * * *

1 00 11 22 33 01 22 33 00

* * * * * * * *
21 00 33 22 31 00 22 33

( ) ( )* ( )* ( )* ( ) ( )* ( )* ( )* ( )

         ( )* ( )* ( )* ( 2 ) ( )* ( )* ( )* ( 3 )
r

r r

y t R t R t T R t R t R t R t R t Q t

R t R t R t Q t T R t R t R t Q t T

= − +

+ − +

  (2.56) 
* * * * * * * *

2 00 11 22 33 02 11 33 00

* * * * * * * *
12 00 33 11 32 00 11 33

( ) ( )* ( )* ( 2 )* ( ) ( )* ( )* ( )* ( )

         ( )* ( )* ( )* ( ) ( )* ( )* ( )* ( 3 )
r

r r

y t R t R t R t T R t R t R t R t Q t

R t R t R t Q t T R t R t R t Q t T

= − +

+ − +

  (2.57) 
* * * * * * * *

3 00 11 22 33 03 11 22 00

* * * * * * * *
13 00 22 11 23 00 11 22

( ) ( )* ( )* ( )* ( 3 ) ( )* ( )* ( )* ( )

         ( )* ( )* ( )* ( ) ( )* ( )* ( )* ( 2 )  .
r

r r

y t R t R t R t R t T R t R t R t Q t

R t R t R t Q t T R t R t R t Q t T

= − +

+ − +
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The first term in NLS channel outputs of Eqs (2.54) thru (2.57) reveal the distortion induced by 

NLS and the remaining terms represent the residual ambiguity when DET is applied.  The general form for 

N codes may be stated as follows.  Let P denote repeated convolution (a deviation from its normal 

symbolic use for multiplication).  Let diverse pulse train s(t) consist of N pulses and have the form 

specified in Eq (2.2).  Each NLS channel output yn (t) is then given by  

 
1 21

* * * *

00 0

( ) ( ) ( ) ( ) ( ) ( )
N NN

n nn r mm kk r kn mm
km m
k nm n m n

m k

*y t R t nT R t Q t kT R t R t
− −−

== =
≠≠ ≠

≠

= − ∗ + − ∗ ∗∑∏ ∏  . (2.58) 

As presented in the next chapter, most codes considered for this work are discrete and it is useful 

to consider a discrete form of  Eq (2.58).  Assume the pulse repetition period Tr is an integer multiple of the 

sampling period Ts, i.e., T .  As shown in Appendix A, the normalized discrete correlation function 

q

r rT= s

mm of Eq (A.39) may be used to represent the correlation function when pulses are discretely coded.  For 

the discrete case, define Fmm as the discrete form of the suppressed autocorrelation function Qmm of  

Eq (2.41) 

  (2.59) ( )
0       if 0      

( ) ( )
( ) otherwise  .mm m n

mm

l
l u h l

lα θ
=

 Φ = Γ ∗ =  


The ISL for discrete pulses may also be defined using either the aperiodic correlation function or 

the normalized aperiodic correlation function

 

1
2

1 1 1
2 2   0

2
1 1

   0

( )

( ) ( ) ( )
(0)

N

nn
l N N N

l
n nn

l N l N
nn l

C l

nnISL u l l
C

θ

−

= − − −
≠

= − = −
≠

= = =

∑
∑ ∑ Φ

*θ

 . (2.60) 

For code sequences of length N, the discrete form of Eq (2.58) becomes 

  . (2.61) 
1 21

* * * *

00 0

[ ] [ ] [ ] [ ] [ ] [ ]
N LN

m mm jj kk km jj
kj j
k mj m j m

j k

y n n mr n n kr n nθ θ θ
− −−

== =
≠≠ ≠

≠

= − ∗ + Φ − ∗ ∗∑∏ ∏

The elemental suppression operator Qm, from Definition 3, may be expressed in terms of the 

suppressed autocorrelation function when the threshold is DET.  Using s(t) of the form 

 
1 1

0 0

( ) ( ) ( )
N N

n r n n
n n

s t u t nT D u
− −

= =

t = − =  ∑ ∑   (2.62) 
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and inserting into Eq (2.34) while applying Definition 6 

  . (2.63) 

[ ]
1

0

1
* *

0

( ) ( ) ( )

               ( ) ( ) ( ) ( )  .

N

m n n m m
n

N

mm r m mm n r
n
n m

s t D u h t u t

Q t mT u t R t u t nT

α

−

=

−

=
≠

  
Θ = Γ ∗ ∗  

   

= − ∗ + ∗ −

∑

∑

In discrete form 

 ( )
1 1

0 0

[ ] [ ] [ ]
N N

k
k k

k ks n u n kr D u
− −

= =

= − =∑ ∑ n  (2.64) 

  . (2.65) 

( )
1

0

1
* *

0

[ ] [ ]

              [ ] [ ] [ ] [ ]  .

N

m k k m m
k

N

mm m mm k
k
k m

s n D u h u n

n mr u n n u n kr

α

θ

−

=

−

=
≠

   
Θ = Γ ∗ ∗        

= Φ − ∗ + ∗ −

∑

∑

Each NLS channel repeatedly applies the elemental suppression operator N-1 times, resulting in 

Eq (2.58) for continuous signals and Eq (2.61) for discrete signals.  From the discrete form, it is now shown 

that by applying NLS using a set of perfect codes (codes with zero autocorrelation sidelobes) results in 

ideal suppression performance for each channel. 

Lemma 1.  The limit of the normalized autocorrelation function as the ISL approaches zero is the unit 

impulse function.  

Proof:   For discrete pulses, the normalized autocorrelation function may be written as the sum of the 

suppressed autocorrelation function and the unit impulse function 

 ( ) ( ) ( )nn nnl l lθ δ= Φ +  (2.66) 

where the unit impulse function is defined as [23:30] 

   (2.67) 
1 if 0       

( )
0 otherwise   .

l
lδ

=
= 



From Definition 7 and Eq (2.60), ISL(un) is the summation of the modulus squared of the suppressed 

autocorrelation function, Fnn(l).  Therefore, the ISL(un) approaches zero as the summation of |Fnn(l)|2 

approaches zero.  Since this is a summation of positive terms, the ISL(un) can only approach zero as the 

individual terms Fnn(l) approach zero.  
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Applying the limit as ISL(un) approaches zero to Eq (2.66) 

 

[ ]
( ) 0 ( ) 0

( ) 0

lim ( ) lim ( ) ( )

                     lim ( ) ( )

                     ( ) .

n n

n

nn nnISL u ISL u

nnISL u

l l

l l

l

θ δ

δ

δ

→ →

→

= Φ +

= Φ +

=

l

 (2.68) 

   

Lemma 2.  Let s[n] be a pulse train consisting of a set of discrete complex pulse functions u0[n], u1[n-r], 

…, uM-1[n-(M-1)r] of length N,  as defined by Eq(2.64).  Then the limit of the elemental suppression 

operator Qm as the ISL of un approaches zero, when the thresholding is DET, is given by 

 ( )
1

( ) 0 0

lim [ ] [ ]
m

N

m kISL u k
k m

s n u n
−

→
=
≠

Θ = −∑ kr  . (2.69) 

Proof:  From Eq (2.65), the output of the elemental suppression operator is 

 
( )

1
* *

0
[ ] [ ] [ ] [ ] [ ] .

N

m mm m mm k
k
k m

s n n mr u n n u nθ
−

=
≠

Θ = Φ − ∗ + ∗ −∑ kr
  (2.70) 

As ISL(um) approaches zero, the summation terms of Eq (2.60) must also approach zero, since all terms are 

positive.  Therefore, the first term of Eq (2.70) approaches zero as ISL(um) approaches zero, that is 

 *

( ) 0
lim [ ] [ ] 0

m
mm mISL u

n mr u n
→

Φ − ∗ =  . (2.71) 

By Lemma 1, the autocorrelation qmm[n] approaches the delta function as ISL(um) approaches zero.  From 

the sifting property of the unit impulse function, convolution with a unit impulse function is the identity 

operation [23:109], so that the second term becomes, in the limit 

  . (2.72) 
1 1

*

( ) 0 0 0

lim [ ] [ ] [ ]
m

N N

mm k kISL u k k
k m k m

n u n kr u n krθ
− −

→
= =
≠ ≠

∗ − = −∑ ∑

Combining results of Eq (2.71) with Eq (2.72) yields Eq (2.69).  

 

Theorem 2 (Main Nonlinear Suppression Theorem).  Let s[n] be a pulse train consisting of a set of 

discrete complex pulse functions u0[n], u1[n], …, uM-1[n] of length N as defined by Eq(2.64).  Let ym[n] be 

the mth nonlinear suppression channel output, with dispersed envelope thresholding used for each 
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elemental suppression operator, as given by Eq (2.61).  As the integrated sidelobe level of each pulse 

function approaches zero, the mth nonlinear suppression channel operation approaches the ideal 

suppression operation Lm.  That is, for each m and for all n 

      

( ) *

( ) 0
[0, 1]

*

lim [ ] [ ] [ ] 

                          [ ] .
                            

k
m m mISL u

k M

mm

y n s n u n

nθ

→
∈ −

= Λ ∗ −

=  (2.73) 

Proof:  From Eq (2.61) , ym[n] is the mth NLS channel output, which is repeated here 

  . 
1 21

* * * *

00 0

[ ] [ ] [ ] [ ] [ ] [ ]
N LN

m mm jj kk km jj
kj j
k mj m j m

j k

y n n mr n n kr n nθ θ θ
− −−

== =
≠≠ ≠

≠

= − ∗ + Φ − ∗ ∗∑∏ ∏ *θ

}−

] .

The NLS channel output is formed from repeated application of the elemental suppression operator Qk.  

The first term of Eq (2.61) approaches the unit impulse function as ISL(uk) approaches zero for all k 

(Lemma 1).  The second term of Eq (2.61) approaches zero as ISL(uk) approaches zero for all k (Lemma 2).  

Therefore, for each  and for all n {0,1,... 1m M∈

  (2.74) 

( )

( ) 0
[0, 1]

*

*

*

lim [ ] [ ]

 [ ]

 [ ] [ ]

[ ] [   
                            

k
mISL u

k M

mm

m m

m m m

y n n mr

n mr

u n mr u n

u n mr u n

δ

θ

→
∈ −

= −

= −

= − ∗ −

= Λ − ∗ −

Therefore, as ISL(uk) approaches zero for all k, the mth NLS channel performance approaches ISO 

performance with the addition of a convolutional um
*[-n] term.  

Theorem 2 clearly shows how NLS performance approaches ISO performance when coding is 

properly chosen.  Also, since the codes are generally assumed to be non-orthogonal, NLS performance 

approaches the lower bound of Theorem 1.  The subsurface at the origin of the diverse pulse train 

ambiguity function, Eq (2.16), has a volume equal to ET
2/N [20:292], the lower bound of Theorem 1.  

Since the ISO suppresses all subsurfaces removed from the origin, due to the cross-ambiguity terms, the 

ISO achieves lower bound performance. 

The Guey-Bell Theorem is based on an idealized radar system using independent receiver outputs 

that are coherently combined.   An important distinction between coherent pulse train processing and the 
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idealized radar system is the signal duration.  If waveforms transmitted with the idealized radar system are 

pulse functions, the total time duration is the pulse width, Tp, as compared to total time duration NTr for the 

coherent pulse train.  The longer time duration of the coherent pulse train results in finer Doppler 

resolution, plus the inherent ambiguities of pulse repetition.  The total volume is distributed under the 

various subsurfaces throughout the delay-Doppler plane.  In contrast, the idealized radar system results in a 

single surface (as opposed to subsurfaces, or “spikes”) without ambiguity.  For this case, orthogonal coding 

can provide cancellation of certain regions of this surface.  If orthogonal coding is possible with a coherent 

pulse train, the cross-ambiguity terms will cancel, leaving only the central subsurface at the origin with 

volume ET
2/N.  Thus, the Guey-Bell theorem is valid for coherent pulse train processing, although it is 

difficult to achieve good orthogonal coding performance when the delay and Doppler are unknown.  It has 

been shown that NLS processing produces similar results when the condition of Theorem 2 is met. 

Under dispersed envelope assumptions, NLS performance is only dependent on pulse 

autocorrelation functions and is not affected by cross-correlation characteristics.  This result is significant 

since it is normally difficult to simultaneously achieve good autocorrelation and cross-correlation 

characteristics for a given set of codes (see Chapter 3).  However, as shown in the following section, cross-

correlation characteristics are an important consideration when trying to achieve DET conditions.   

2.3.4 Thresholding 

Dispersed envelope thresholding was defined in Section 2.3.1 as the threshold providing 

maximum suppression of autocorrelation peaks without suppressing responses below dispersed pulse 

levels.  Because target parameters are unknown, the DET must be adaptive and based on received data for 

the current processing interval.  Specifically, before applying the nonlinearity, the processor must 

determine a threshold value for each sample based upon the matched filter output prior to suppression. 

Visual inspection of Figure 2-4 indicates the DET ideally tracks the envelope of the absolute value 

of the data.  By definition, the dispersed envelope threshold always equals or exceeds the data except where 

a peak response occurs.  To achieve this, two fundamental approaches are considered.  The first approach is 

based on averaging and the second approach utilizes a reserved (non-transmitted) code to form a matched 

filter designed to “train” the NLS thresholding process.  
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2.3.4.1 Scaled Average Threshold 
 

For a point target, a compressed pulse consists of a large peak, equal to some constant value A 

multiplied by the code length.  Data values in the neighborhood of the peak are less than or equal to A 

multiplied by the peak autocorrelation sidelobe.  For a “good” code, the sidelobe level is much less than the 

peak value.  By averaging the absolute value of the data over some interval of length greater than one, the 

threshold value is guaranteed to be less than the peak.  To ensure the threshold remains above the dispersed 

data level, i.e., above the code cross-correlation response(s), the average must be scaled, either over the 

entire data set or for each subinterval of interest.   The main parameters for scaled average thresholding are 

the scaling constant, the averaging interval length, and the interval length over which the threshold is 

constant.  Three basic approaches encapsulate the different ways these parameters may be varied 

1) Constant Threshold.  Averaging over all samples in a block of data (normally one PRI) and scaling 

the result produces a constant threshold.  For N total samples, the constant threshold is given by 

 
1

0

[ ]
N

C
n

a y n
N

α
−

=

= ∑  (2.75) 

where a is the scaling constant and y[n] is the output of the first matched filter in an NLS element. 

2) Locally Constant Threshold.  Instead of averaging over the entire PRI, the averaging may be done 

over a subinterval Ik of the PRI interval IN.  Let K be the length of the subinterval, chosen such that 

N/K is an integer.  The locally constant threshold is given by 

 [ ] [ ]
k

k
n I

an y
K

α
∈

= ∑ n  (2.76) 

where a is the scaling constant.   

3) Local Average Threshold.  The average may be taken over an interval surrounding each sample n, 

and the entire threshold scaled by a single constant a.  This method is a form of data smoothing 

where past and future values are used to compute the threshold for each data point.  Typically, a 

smoothing operation is optimal for a specific form of interfering noise, e.g., additive white 

Gaussian noise.  For NLS processing, the thresholding problem is not one of parameter estimation 

in the presence of noise.  Rather, the problem involves estimating the data envelope while 
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excluding autocorrelation peaks.  Letting 2b + 1 the number of averaging samples, the local 

average threshold is given by 

  
( )

[ ] [ ]
2 1

n b

L
k n b

an y
b

α
+

= −

=
+ ∑ k  . (2.77) 

where near the beginning and end of sequence y[n] the average is taken over less than 2b+1 total 

values.   

The received data generally represents a superposition of ambiguous and unambiguous responses 

from a target field consisting of point targets and continuously distributed clutter.  To gain insight into how 

well each of the three thresholding schemes perform, a target field consisting of only point targets was first 

considered.  Consider a scenario where R1 = 0.25Ru and R2 = 1.75Ru are the ranges of two point targets with 

equal RCS.  Choosing a PRI of Tr = 4Tp, for the given target ranges, ensures averaging is only done over 

nonzero data.  Let the first target return be coded with u0[n] and the second target return be coded with 

u1[n].  Initially, the target returns are assumed to have equal amplitude.  Let s[n] be the received data when 

both targets are present and sr[n] be the received data when only the first target is present.  Apply both 

sequences to the filter matched to u1[n] 

  (2.78) 1
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= ∗

Next, apply the hole-punch operator to y[n], which will suppress the first target.  Then perform 

convolution of both y[n] and yr[n]  with u1[n].  Finally, apply both y[n] and yr[n] to the filter matched to 

u0[n].  Let ys[n] be the result of the suppression operation and yc[n] be the “clean” data 

 ( )1 0[ ] [ ] [ ] [ ]sy n u n h n y nα= ∗ ∗ Γ  (2.79) 
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 The mean-square error (MSE) of ys[n] compared to reference yc[n] is determined from 
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where β is a scaling constant and C1 and C2 are bias constants.  The constants are adjusted until the MSE is 

minimized, to eliminate non-zero bias and scaling factors.    

To determine the performance of each thresholding scheme, and to find the parameters producing 

best performance, the above procedure is used while varying 1) a to determine the constant threshold value, 

2) a and K to determine the locally constant threshold value, and 3) a and b to determine the local average 

threshold value.  Five arbitrary binary code sets are used, with properties as summarized in Table 2-1.   The 

PSL, ISL, and PCCL metrics are defined in Eq (3.1) through Eq (3.3). 

Table 2-1.  Code Properties for Minimum MSE Threshold Analysis 

Code 
Length (N) PSL (dB) Max ISL (dB) PCCL (dB) 

63 -16.9 -4.7 -10.0 
127 -20.5 -5.1 -21 
255 -19.2 -1.1 -17.5 
511 -22.3 -0.7 -20.0 

1023 -24.2 -0.6 -22.6 
 

Threshold estimation results are listed in Table 2-2.  Estimated thresholds are plotted for a 

TB = 127  (Figure 2-8 through Figure 2-10) along with the output of the first matched filter.  The minimum 

mean square error (MMSE) between the suppressed data and the distorted clean data is an indicator of how 

well the ambiguous energy was suppressed.  A value of one indicates little to no suppression, while a value 

of zero indicates maximum suppression (the suppressed data and the clean data are identical). 

Table 2-2.  Minimum MSE Threshold Parametric Estimation Results 

Code Length Constant Threshold Locally Constant Threshold Local Average Threshold 
 MMSE a MMSE a K MMSE a b 

63 0..2477 5.9 0.23618 5.1 23 0.2477 4 2 
127 0.17171 5.2 0.15381 2.6 19 0.15705 3.5 9 
255 0.32301 4.1 0.29862 2.5 13 0.28941 2.6 2 
511 0.30727 4.5 0.30397 3.8 16 0.30247 3.9 8 
1023 0.32168 4.5 0.31243 3.4 30 0.31283 2.6 1 
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Figure 2-8.  Constant Threshold, TB = 127, a = 5.2 
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Figure 2-9.  Locally Constant Threshold, TB = 127, a = 2.6, K = 19 
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Figure 2-10.  Local Average Threshold, TB = 127, a = 3.5, b = 9 

Parameters a, b, and K in Table 2-2 do not follow a perceivable trend. Thus, there is no apparent 

rule for choosing them. To further analyze the threshold determination problem, the effects of range 

propagation loss are added to the MMSE characterization procedure.  The amplitude of the target returns 

with range propagation loss included is found from 
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If the amplitude response of the first target (R1 = 0.25Ru) is unity, and assuming unity RCS for both targets 

(σ1 = σ2 = 1), then the amplitude response of the second target (R2 = 1.75Ru) is 
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Table 2-3 Minimum MSE Threshold Parametric Estimation Results, With Range Propagation Loss 

Code Length Constant Threshold Locally Constant Threshold Local Average Threshold 
 MMSE a MMSE a K MMSE a b 

63 0.067643 8.7 0.000133 5.2 23 0.000143 4 2 
127 0.000407 8.3 0.00000 3.3 5 0.000000 3.5 9 
255 0.000599 7.8 0.000201 3.6 9 0.000204 3.6 2 
511 0.000559 8.7 0.000178 3.7 6 0.000176 3.9 8 
1023 0.000529 8.6 0.000193 4.2 11 0.000194 4.3 5 
 

Threshold MMSE results including range propagation loss are summarized in and illustrated in 

Figure 2-11 through Figure 2-13.   Comparing Table 2-2 to Table 2-3 reveals a much smaller MMSE for all 

cases.  The weaker target contributes much less energy to the overall average, producing the smaller MSE.  

The scaling constants are generally larger.  The averaging intervals are smaller for the locally constant 

threshold.  

A major flaw with the constant thresholding approach is revealed in Figure 2-11.  The contribution 

of the second target to the overall average, as taken over the entire PRI, is insignificant, i.e., the constant 

threshold value yielding MMSE is far greater than the peak response of the second target, preventing its 

suppression.  Given the dependence of radar target return on range, the constant threshold is not a good 

candidate for NLS.   
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Figure 2-11.  Range Propagation Loss, Constant Threshold, TB = 127, a = 8.3 
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Figure 2-12.  Range Propagation Loss, Locally Constant Threshold, TB = 127, a = 3.3, K = 5 
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Figure 2-13.  Range Propagation Loss,  Local Average Threshold, TB = 127, a = 3.5, b = 9 

The threshold near the weak target (which is compressed) is shown for the local average threshold 

(Figure 2-14) and the locally constant threshold (Figure 2-15).  While both thresholds are below the peak, 

the locally constant threshold is higher than the local average threshold.  This may be attributed to the 

smaller averaging interval (K = 5 vs. b = 9).     
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Figure 2-14.  Local Average Threshold in Vicinity of Weak Target, TB = 127, a = 3.5, b = 9 

 

280 300 320 340 360 380 400 420 440 460 480 500
0

0.02

0.04

0.06

0.08

0.1

0.12

Threshold (α)

n

|A
m

pl
itu

de
|

Matched Filter 
Output

 

Figure 2-15.  Locally Constant Threshold in Vicinity of Weak Target, TB = 127, a = 3.3, K = 5 

 

To assess the impact of different parameters on locally constant threshold performance, it is helpful 

to fix one parameter and determine MSE performance as the other is varied.  Figure 2-16 shows the locally 
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constant threshold MSE for TB = 127, fixed subinterval length K, and varying scaling constant a.  The MSE 

rapidly approaches zero as a increases with the error being greatest for lower threshold values.  Finding the 

correct a is not a trivial task.  One means for computing a is by estimating the data variance.  In a clutter-

limited environment, this requires some assumptions about the probability distribution of the clutter.  A 

second method is to employ feedback in a manner similar to automatic gain control.  Both of these methods 

may require extensive data processing and were not explored as part of this work.  As shown in  

Section 2.3.4.2, a computationally simple approach for providing comparable threshold estimation 

performance as the averaging methods is readily available. 
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Figure 2-16.  MSE vs. Scaling Constant a for Locally Constant Threshold, TB = 127, K = 5 

 

The data in Figure 2-17 is the result of fixing a and varying K.   The MSE generally increases with 

increasing K but many local minima and maxima occur.    Figure 2-18 shows the same results for K = 0:10.  

The MMSE occurs for K = 5.  Both figures clearly illustrate that the subinterval length should be small – on 

the order of a few samples.  To suppress autocorrelation peaks, averaging three to five samples should be 

enough to set the threshold below the peak, assuming the scaling constant is set sufficiently high. 

2-33 



 

 

 

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

Subinterval Length (K)

M
SE

 

Figure 2-17. MSE vs. Subinterval Length K for Locally Constant Threshold, TB = 127, a = 3.3 
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Figure 2-18.  MSE vs. Subinterval Length K for Locally Constant Threshold TB = 127, a = 3.3, 
K = 0:10 
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2.3.4.2 Reserved Code Adaptive Thresholding 
 

The reserved code adaptive thresholding exploits the crosscorrelation properties of good code 

families.  Since the DET value is set above the maximum crosscorrelation level and ideally remains well 

below the autocorrelation peak, an alternative approach to data averaging involves threshold estimation 

based solely on code crosscorrelation characteristics.  Unfortunately, the received data may contain 

responses from all transmitted pulse codes and any filter matched to one specific code may contain one or 

more autocorrelation peaks in its output.   

The proposed adaptive thresholding solution involves reserving one code (from the family of pulse 

codes transmitted) to determine threshold characteristics.  Given a set of M codes with good auto/cross-

correlation properties, one of the codes may be reserved (not transmitted) and used for adaptively 

“training” the thresholding process.  For example, if M = 5 only four codes are used to encode the 

transmitted waveform.  For each NLS element, two matched filters are formed, as shown in Figure 2-19.  

The first filter is matched to the mth pulse code being suppressed, resulting in compressed pulses for that 

code.  The second filter is matched to the rth (5th in this case) reserved code and its output only consists of 

dispersed data, i.e., no autocorrelation peaks are possible/ present since the fifth code was not transmitted.  

If crosscorrelation levels and properties are consistent for all code pairs of the set, the adaptive threshold 

determined from the rth matched filter will closely track the output of the first matched filter, except where 

autocorrelation peaks occur.  By dividing the received data into intervals, as with locally constant 

thresholding approach, the threshold level in each interval may be determined as the maximum value of the 

second matched filter over that interval.   
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Figure 2-19.  Reserved Code Adaptive Thresholding 

 

Figure 2-20 shows results for reserved code thresholding using the previous example.  In this case, 

the MMSE was 0.0181 for a subinterval length of K = 54 and for TB = 127, which is somewhat greater than 

the best results obtained with the local average thresholding method.  However, the computational 

advantage of the reserved code technique is clear.  By fixing the subinterval length, the only processing 

requirements are matched filtering and maximum value determination over every interval of interest.  

Determination of an optimal scaling constant is not required, as with the three averaging methods.  The 

primary disadvantage lies in the inherent dependence of auto-/cross-correlation properties on the number of 

codes in the set.  Increasing the number of required codes by one, as required for holding one in reserve, 

generally results in larger auto-/cross-correlation sidelobe levels, as will be shown in Chapter 3. 
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Figure 2-20.  MMSE Reserved Code Threshold 

2-36 



 

  The suitable length of the subinterval is dependent upon the probability that the actual 

crosscorrelation between two codes will exceed the threshold.  In Figure 2-21, the estimated probability of 

threshold crossing is shown for three transmitted codes and one reserved code, TB = 127, by counting the 

number of threshold crossings for each crosscorrelation as a function of the subinterval length.  Since the 

output of the matched filter has duration 2TB, dividing the number of crossings by 2TB provides an 

estimate of the probability that the threshold will be crossed.  As shown in Figure 2-22, the MSE closely 

tracks the probability of threshold crossing, decreasing with increasing K.  Unlike the averaging 

approaches, the performance improves for larger values of K. 

Since the threshold yielding the MMSE for each case appears to be a dispersed envelope 

threshold, which closely follows the dispersed-code level, it is conjectured that in the point target case the 

DET is optimal, given the optimality criteria is based on MSE.   
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Figure 2-21. Estimated Probability of Threshold Crossing for Reserved Code Threshold, TB = 127 
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Figure 2-22.  MSE vs. Subinterval Length, Reserved Code Thresholding, TB = 127 
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3.  Pulse Code Selection 

The radar range equation illustrates the dependence of detectable range on received energy.  Much 

of the rapid advancement in radar performance during World War II was the result of improvements in the 

peak power of transmitter tubes, while short pulses were used to provide sufficient range resolution 

[24:746].  However, achievable peak power levels were limited and increasing the average power required 

wider pulse widths, resulting in poorer range resolution [25:10]. 

An early solution, as first proposed during WWII, was to increase the pulse bandwidth by linearly 

sweeping the carrier [26].  This technique became known as chirp or Linear Frequency Modulation (LFM).  

However, this technique was impractical at that time due to the incoherent nature of existing transmitter 

tubes. The general technique of increasing pulse bandwidth to improve range resolution while transmitting 

the pulse for a longer time duration (and hence more energy) is known as pulse compression. 

Most radar pulse coding is done for the sole purpose of achieving the benefits provided by pulse 

compression.  Exceptions include the use of frequency modulation for ranging applications, e.g., 

continuous wave and high PRF radar, and the use of coded pulse trains to increase Doppler resolution.  

Optimal coding is based on criterion such as measurement errors, detection performance, and false alarm 

probability.  These criteria have traditionally placed certain restrictions on code selection.  Consequently, 

the diverse pulse coding techniques investigated as part of this research are rarely found in radar literature – 

the repeated use of a single pulse code has met most optimality requirements for traditional applications 

and identically coded pulse trains have been used to demonstrate greatly enhanced Doppler processing. 

For the NLS work of this research, diverse pulse coding techniques are required to ensure target 

responses from individual pulses are distinguishable from one another.  This inherently requires the 

generation of code families possessing good auto- and cross-correlation properties.  As will be shown, such 

properties are often mutually exclusive.  With the exception of Brown codes, the emphasis in this chapter is 

on discrete code generation and performance characterization.  Digital signal processing capabilities and 

the relative ease by which NLS concepts can be tested with discrete coding techniques provided the 

primary impetus for the discrete code investigation. 
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The metrics commonly used to quantify the suitability of a particular code (or code family) for 

radar applications are the Peak Autocorrelation Sidelobe Level (PSL), Integrated Autocorrelation Sidelobe 

Level (ISL), and Peak Crosscorrelation Level (PCCL) [22:537,32:754].  The ISL was introduced in 

Chapter 2.  These metrics are usually stated in decibels, and normalized by the square of the peak response.  

The discrete aperiodic correlation function, Cmn, is defined by Eq (A.35). 
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For discrete codes, the unnormalized maximum autocorrelation and crosscorrelation levels are also 

useful, as will be shown in Section 3.2 when correlation bounds for discrete codes are introduced. 

3.1 Types of Radar Codes 

3.1.1 Frequency Modulation Coding 

Frequency modulation may be either linear (LFM) or nonlinear (NLFM).  LFM is perhaps the 

simplest and most widely used pulse compression technique.  An LFM pulse may be either actively 

generated using a linearly swept oscillator or passively generated using dispersive delay devices.  Highly 

reliable dispersive devices are readily available, and may provide very high compression ratios.  Examples 

include ultrasonic delay lines, waveguides operated near cutoff, and optical devices [22: 589].   

The autocorrelation function of an LFM pulse is shown in Figure 3-1.  As indicated, the Peak 

Sidelobe Level (PSL) is approximately –13 dB, which can be further reduced using spectral shaping and/or 
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sidelobe weighting.  However, these reduction techniques typically result in degraded range resolution, 

lower S/N, or both.  The range-Doppler coupling of LFM was demonstrated in Figure 1-8, which may be 

resolved using either a priori knowledge of range or Doppler or multiple LFM modulations [2].  However, 

the range-Doppler coupling results in a relative high Doppler tolerance.  Doppler shifts result in a 

corresponding time shift while the SNR is only moderately degraded. 
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Figure 3-1.  Autocorrelation of LFM Pulse for TB = 127 

 

The original NLS implementation of Palermo, Leith, and Horgen was demonstrated utilizing two 

LFM waveforms with conjugate phase functions.  The principle disadvantage of using LFM waveforms for 

NLS coding is that only two functions exist which have equivalent TB for a fixed pulse length.  However, if 

the requirement is to suppress only one ambiguous range interval, LFM is a relatively simple and effective 

choice. 

3.1.2 Binary Phase Coding 

Binary phase (biphase) coding is limited to applying one of two discrete phase shift values, 

typically 0 or π, to a fundamental waveform.  Binary sequences have been extensively researched and their 
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performance characteristics are well understood.  This is particularly true in the communications area 

where they currently play an important role in spread spectrum communications.  The three most 

commonly used biphase codes for radar applications are the Barker, Minimum Peak Sidelobe (MPS), and 

pseudorandom codes. 

Barker codes, as listed in Table 3-1, are representative of perfect codes having autocorrelation 

sidelobes with a magnitude of 1 or 0.  Here, perfect simply implies a two-valued characteristic.  There are 

no known Barker codes having a length greater than 13 which severely limits their use to low compression 

ratio applications.   

Table 3-1.  Known Barker Codes [22:538] 

Length Code Elements PSL (dB) ISL (dB) 
1 +   
2 + −, + + -6.0 -3.0 
3 + + − -9.5 -6.5 
4 + + − +, + + + − -12.0 -6.0 
5 + + + − + -14.0 -8.0 
7 + + + − − + − -16.9 -9.1 

11 + + + − − − + − − + − -20.8 -10.8 
13 + + + + + − − + + − + − + -22.3 -11.5 

 

MPS codes result from exhaustive computer searches that are seeking to find codes having the 

lowest possible autocorrelation sidelobes – there are no crosscorrelation constraints considered in 

determining MPS codes.  To date, the maximum code length discovered for an MPS code is 69 [27].  Since 

MPS codes are not specifically designed to minimize crosscorrelation, they are not well suitable for NLS 

applications.  However, their performance does provide an indication of achievable autocorrelation 

sidelobes limits for a given code length (less than 69). 

Pseudorandom codes are widely used in digital communications.  They are easily generated using 

various linear feedback shift register (LFSR) configurations and are well-suited for creating large code sets 

in real-time.  The periodic autocorrelation and crosscorrelation functions of pseudorandom codes are well 

understood.  However, their aperiodic crosscorrelation properties have not been extensively explored.  As 

shown in the following sections, the properties obtained through periodic crosscorrelation that make 
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pseudorandom codes desirable for multiple access communications, do not carry over into aperiodic 

crosscorrelation applications such as NLS processing and pulsed radar applications in general. 

Nearly all pseudorandom codes are derived from Maximal Length Sequences (m-sequences), 

which are LFSR configurations operating to yield a maximum possible code period of 2r –1 where r is the 

total number of register stages.  M-sequences possess many interesting properties with the most useful 

being that the periodic autocorrelation function is two-valued, i.e., it is either 1 or –1/N where N is the code 

period [28: 599].  Like Barker sequences, m-sequences represent perfect codes except that Barker codes are 

perfect for aperiodic correlation and m-sequences are perfect for periodic correlation. 

Certain pairs of m-sequences are called preferred pairs.  Preferred pairs are code pairs that yield a 

three-value periodic crosscorrelation function.  Gold codes, a popular family of codes used for 

communication and navigation, are derived using preferred pairs of m-sequences.  The chief advantage of 

Gold codes is the large number of codes in a set of given length (N + 2), and the three-value periodic 

crosscorrelation function [28:605].  

3.1.3 Polyphase Coding 

Polyphase codes are discrete codes used to yield possible waveform phase shift values of 2πk/N, 

k = 0, 1, … N, as opposed to binary codes which are limited to two phase values.  Most polyphase coding is 

derived from LFM and yields waveforms with quadratic phase function.  Like LFM, they have relatively 

high Doppler tolerance (compared to biphase codes) and good autocorrelation sidelobe properties [22:559]. 

For 2 /j Ne πα = and any positive integer N, Eqs (3.4) through (3.8) represent the best-known 

polyphase codes [29]. 

 

A.  Frank Sequence:  ( )2 /) , 0 ,  j k n m( 1f km n e i n mπ+ + = ≤ <   and N = m2 . (3.4)  

 

B.  Chu Sequence:       and q ∈ Integers  . (3.5) 
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C.  P3 and P4 Codes:  
2 / 23( 1) ,  0kP k k Nα+ = ≤ ≤  , (3.6)         

 
2( ) / 24 ( 1) ,  0k kNP k k Nα −+ = ≤ ≤  . (3.7)  

D.  Golumb Sequence: ( 1) / 2( 1) ,  0k kg k kα + N+ = ≤ ≤  . (3.8) 

 

The Chu, P3, P4, and Golumb sequences all possess the same absolute aperiodic autocorrelation 

function; they are equivalent except for a linear phase transformation [29:1001].  Like other radar codes, 

polyphase codes are specifically designed to yield optimal autocorrelation properties and no family of 

polyphase codes with optimal crosscorrelation properties are known. 

3.2 Correlation Bounds 

The best achievable code performance for NLS application may be determined using lower 

bounds of the aperiodic correlation function.  Welch [30] and Sarwate [31] have determined these bounds 

for discrete, complex sequences.  The aperiodic correlation function is defined in Eq (A.35). 

Theorem 3 (Welch Bound) [30:398].  Let P be a set of M pulse functions of length N.  Define the 

Maximum Aperiodic Autocorrelation Sidelobe, Ca, as 

 { }max ( ) : , 1 1a nn nC C l u P l N= ∈ ≤ ≤ −  (3.9) 

and define the Maximum Aperiodic Crosscorrelation Level, Cc, as 

 { }max ( ) : , , , 1 1c nm n mC C l u u P n m N l N= ∈ ≠ − ≤ ≤ −  . (3.10) 

The Maximum Correlation value, Cmax, of any two sequences in P is bounded by 

 
( )

( )
2 2 2
max 1

max ,
2 1

a c N MC C C
N N N NM M

− 
= ≥ 

− − 
 . (3.11) 
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Theorem 4 (Sarwate Bound) [31:723].  Given definitions of Theorem 3, and for any set of M sequences of 

period N satisfying Cnn(0) = N  for all n ∈ P 

 
2 2(2 1) 2( 1) 1

( 1)
c aC CN N

N N N M N
   − −

+ ≥   −   
 . (3.12) 

The Sarwate bound is more general than the Welch bound, since the latter provides a lower limit 

on the maximum level of any correlation, while the former establishes a concrete relationship between 

autocorrelation sidelobes and crosscorrelation levels.  Welch and Sarwate bounds are plotted in Figure 3-2.  

The x-axis is the maximum aperiodic crosscorrelation level and the y-axis is the maximum aperiodic 

autocorrelation level.  By calculating the maximum aperiodic correlation values Ca and Cc, the properties of 

any code set may be plotted as a point in two-dimensional space. The Welch bound is the shaded square 

area in the lower left-hand corner and provides a lower bound for the maximum of both correlation 

functions.  The Sarwate bound is the straight line derived from the equation 

 
( ) ( ) ( )

2 2

1
/ 2 1 1 / 2 2

c aC C
N N

N N N M N

   
   
   

+ =
− − −

 . (3.13)   

Per Theorem 4, the point (  cannot lie below the Sarwate bound.  The point where the Welch 

bound square touches the Sarwate bound line is the point at which both the maximum autocorrelation and 

maximum crosscorrelation are equal and optimum (for NLS application). 

)2 2/ , /c aC N C N
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Figure 3-2.  Sarwate and Welch Bounds [31:723] 

The Sarwate bound establishes the qualitative principle that a code family with good aperiodic 

autocorrelation characteristics will have relatively poor aperiodic crosscorrelation characteristics.  

Likewise, a code family with good aperiodic crosscorrelation characteristics will have relatively poor 

aperiodic autocorrelation characteristics [31:720].   This relationship effectively limits the usefulness of 

known radar codes for NLS applications since such codes are normally optimized for autocorrelation 

properties.   

3.3 Results for Well-Known Binary Codes 

As a starting point for determining good code families for NLS applications, the aperiodic 

correlation characteristics of m-sequences and Gold codes were examined.  Code lengths of N = 31, 63, 

127, and 255 were evaluated using M = 2, 3, 4, and 5 codes.  Although these particular code lengths may 

not provide sufficient time-bandwidth products for operational applications, their performance provides 

useful insight into comparative code performance that may be readily extended to larger code lengths. 

3.3.1 M-Sequence Performance 

M-sequence results are summarized in Table 3-2.  These results are for illustrative purposes only 

and may not be indicative of best achievable code performance.  In this case, initial shift register values 

were randomly chosen and only a few select polynomials were tested.  As indicated by the Ca 

autocorrelation metric, autocorrelation properties do not vary significantly with the number of codes.  This 
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indicates the autocorrelation properties are nearly uniform and quite good.   As indicated by the Cc 

crosscorrelation metric, crosscorrelation properties appear highly dependent upon code selection.   

Table 3-2.  M-Sequence Aperiodic Correlation Properties 

Code 
Length (N) 

Number of 
Codes (M) 

Ca Cc PSL 
(dB) 

ISL 
(dB) 

PCCL 
(dB) 

31 2 4 9 -17.8 -6.1 -10.7 
31 3 5 10 -15.8 -9.8 -4.3 
63 2 9 20 -16.9 -3.5 -10.0 
63 3 9 20 -16.9 -4.5 -10.0 
63 4 9 20 -16.9 -4.5 -10.0 
127 2 10 23 -22.1 -5.0 -14.8 
127 3 11 23 -21.2 -4.1 -14.8 
127 4 11 44 -21.2 -5.6 -9.2 
127 5 11 44 -21.2 -4.7 -6.2 
255 2 18 37 -23.0 -4.5 -16.8 
255 3 18 46 -23.0 -4.8 -14.9 
255 4 18 55 -23.0 -4.7 -13.3 
255 5 18 96 -23.0 -4.5 -8.5 

3.3.2 Gold Code Performance 

Gold Code results are summarized in Table 3-3.  These results were obtained using randomly 

chosen codes from a family of (N + 2) codes.  Comparison with m-sequence results shows that the code 

properties are generally much poorer, especially when comparing the autocorrelation properties.  Also, 

much larger integrated sidelobe levels are indicated which will likely produce larger amounts of residual 

ambiguity (per Theorem 2). 

Table 3-3.  Gold Sequence Aperiodic Correlation Properties 

Code 
Length (N) 

Number of 
Codes (M) 

Ca Cc PSL 
(dB) 

ISL 
(dB) 

PCCL 
(dB) 

31 2 16 20 -5.7 3.8 -3.8 
31 3 16 20 -5.7 4.0 -3.8 
31 4 12 16 -8.2 0.7 -5.7 
31 5 12 16 -8.2 0.7 -5.7 
127 2 44 60 -9.2 7.5 -6.5 
127 3 52 76 -7.8 8.7 -4.4 
127 4 44 76 -9.2 8.7 -4.5 
127 5 56 84 -7.1 8.6 -3.6 
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3.4 Combinatorial Optimization 

Pseudorandom codes initially appeared promising for NLS application due to their wide use in 

multiple access communications.  However, their aperiodic correlation properties do not mimic the periodic 

correlation properties that have made them attractive for communication applications.  A few researchers 

have considered the need for diverse-pulse radar waveforms for multi-user ranging [32] and for low 

probability of intercept (LPI) signals [33].  Since no deterministic methods are known for generating good 

code sets with desirable aperiodic correlation characteristics, search algorithms have been employed to find 

codes with performance nearing the Sarwate bound.  However, when considering M binary codes of length 

N, an exhaustive search algorithm must consider 2N possibilities taken M at a time to search all possible 

codes, a task which is impractical for even modest code lengths [34]. 

Griep [32] and Deng [33] use a code selection approach based on simulated annealing (SA), a 

form of combinatorial optimization.   Griep developed 4-phase polyphase codes along with optimum filters 

for code lengths up to 40, and for four users.  Deng only developed binary codes.  In this work, SA codes 

were generated for up to five “users” (range intervals for NLS), up to code lengths of 1023, and from 2 to 

48 phases.  Table 3-4 compares some results from this work (NLS) with Deng and Griep.  For this 

particular code length, the NLS code is superior to the other codes.  Other significant code lengths are 

unavailable from Griep, and further comparison with Deng shows similar results.  Computational 

advantage is one reason behind this, since Griep published in 1995 and Deng in 1996.   

Table 3-4.  Caparison of Code Results with Griep[32] and Deng[33] for TB = 31 

 Code PSL (dB) PCCL (dB) 
NLS 48-Phase Length 31 -18.9 -16.9 
Deng Binary Length 31 -15.8 -11.8 
Griep 4-Phase Length 31 -18.4 -11.9 

 

Code selection via SA is based on physical annealing, i.e., a disordered material is cooled from a 

high to a low temperature state, seeking the low energy ground state [35].  In a similar fashion, the 

aperiodic auto- and crosscorrelation sidelobe levels can form an energy state that can be minimized. 
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3.4.1 Simulated Annealing (SA) Algorithm 

Simulated annealing was first introduced by Kirkpatrick, Gelatt, and Vecchi at IBM in 1983, with 

the principle application being optimal computer design [36].  They expanded the Metropolis algorithm, 

invented in 1953, to a broader class of problems.  The Metropolis algorithm works as follows [37:445]: 

1. A description of possible system configurations is made.  For coding this may be an N 
x M matrix of code elements. 

 
2. A generator of random changes is required and presents various options to the system.  

In a matrix of binary codes, this may be a sign reversal of a random code element. 
 

3. An energy function E is evaluated with the overall objective of the algorithm being the 
minimization of E. 

 
4. A control parameter T (analogous to physical temperature) and an annealing schedule 

are used to control the rate of “cooling.” 
 
5. At every state change, new energy E2 is compared to previous energy E1.   If, E1 < E2 

the state change is accepted.  Otherwise, the state change is conditionally accepted 
with probability (based on Boltzmann’s Equation) 

 
 2 1( ) /E E kTp e − −=  . (3.14) 

 To find good codes for NLS applications, the following composite energy function was used 

 1 2aE w C w Cc= +  (3.15) 

where Ca and Cc are the maximum autocorrelation and crosscorrelation values, respectively, and w1 and w2 

are weights for assigning a relative level of importance to each correlation during the minimization process.    

For this work, the annealing schedule, initial temperature, and equilibrium determination were 

empirically determined.  In the initial “hot” state, the energy fluctuates rapidly, preventing the system from 

falsely stabilizing at a local minimum.  As the temperature is lowered, fewer and fewer acceptances of 

higher energy values occur.   

For demonstration purposes, SA results for random binary and polyphase codes are presented in 

the next section.  The algorithm developed is easily adaptable to permit polyphase code generation; rather 

than using a matrix of only ones and minus ones, the polyphase matrix simply consists of integers between 

zero and K, where K is the number of desired phase values.  Experimentation shows that the complex 

computation required for the energy function of Eq 3.12, as well as the increase in the number of possible 

values of each code element from two to K, greatly increases the required computation time to convergence 

on an acceptable solution. 

3-11 



 

3.4.2 Simulated Annealing Results 

Simulated annealing results for binary codes are summarized in Table 3-5.  Table 3-6 summarizes 

the maximum autocorrelation level and maximum crosscorrelation for all three binary codes.  A visual 

representation of code performance is shown in Figure 3-3 through Figure 3-6, and based on Figure 3-2.  

Maximum correlation properties of each code are plotted in the normalized (Cc
2/N, Ca

2/N) coordinate space.  

In all cases, circles (○) represent SA codes, squares (□) represent m-sequences, and triangles (∆) represent 

Gold codes.  Each plot is for one value of M (number of codes) and all values of N (code length) computed 

in the previous sections, i.e., N = 31, 63, 127 and 255.   The Sarwate bound is plotted in the lower left 

corner. 

In some cases, Gold code markers do not even appear on the plots, giving a clear indication of 

how poor their relative performance is.  Generally, m-sequences possess equal or better autocorrelation 

properties than SA derived codes.  However, as indicated by data in the figures, the SA derived code 

performance is closer to the Sarwate bound.  The SA-codes have superior cross-correlation performance for 

all code lengths, as demonstrated by the small values of Cc in Table 3-6. 

Table 3-5.  SA Generated Binary Codes:  Aperiodic Correlation Properties 

Code 
Length (N) 

Number of 
Codes (M) 

Ca Cc PSL 
(dB) 

ISL 
(dB) 

PCCL 
(dB) 

31 2 5 7 -15.8 -3.5 -15.8 
31 3 6 8 -14.3 -2.1 -11.8 
31 4 7 8 -12.9 -2.2 -11.8 
31 5 6 10 -14.2 -2.3 -9.8 
63 2 10 10 -16.0 -1.8 -16.0 
63 3 9 12 -16.9 -3.3 -14.4 
63 4 9 14 -16.9 -2.0 -13.1 
63 5 9 14 -16.9 -2.1 -13.1 
127 2 13 16 -19.8 -3.3 -18.0 
127 3 14 18 -19.2 -2.6 -17.0 
127 4 13 21 -19.8 -2.9 -15.6 
127 5 15 21 -18.6 -2.3 -15.6 
255 2 22 22 -21.3 -1.16 -21.3 
255 3 26 30 -19.8 -0.7 -18.6 
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Table 3-6.  Comparison of Maximum Autocorrelation (Ca)  and Maximum Crosscorrelation (Cc) 
Values for SA Generated Codes , M-Sequences, and Gold Codes 

  SA m-sequence Gold 
Code Length (N) Number of Codes (M) Ca Cc Ca Cc Ca Cc 

31 2 5 7 4 9 16 20 
31 3 6 8 5 10 16 20 
31 4 7 8 N/A N/A 12 16 
31 5 6 10 N/A N/A 12 16 
63 2 10 10 9 20 N/A N/A 
63 3 9 12 9 20 N/A N/A 
63 4 9 14 9 20 N/A N/A 
63 5 9 14 N/A N/A N/A N/A 
127 2 13 16 10 23 44 60 
127 3 14 18 11 23 52 76 
127 4 13 21 11 44 44 76 
127 5 15 21 11 44 56 84 
255 2 22 22 18 37 N/A N/A 
255 3 26 30 18 46 N/A N/A 
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Figure 3-3.  Maximum Aperiodic Correlation Results for M = 2 Codes.  The Sarwate Bound Appears 
in the Lower Left-Hand Corner 
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Figure 3-4.  Maximum Aperiodic Correlation Results for M = 3 Codes. The Sarwate Bound Appears 
in the Lower Left-Hand Corner 
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Figure 3-5.  Maximum Aperiodic Correlation Results for M = 4 Codes. The Sarwate Bound Appears 
in the Lower Left-Hand Corner 
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Figure 3-6.  Maximum Aperiodic Correlation Results for M = 5 Codes.  The Sarwate Bound 
Appears in the Lower Left-Hand Corner 
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Although better binary SA codes are likely possible, simply by employing more computer time, 

polyphase coding is more likely to yield performance closer to the Sarwate bound since it was derived for 

complex sequences.  This is illustrated in Figure 3-7 where 4, 8, 16, 32, and 48-phase correlation 

maximums are plotted for comparison with binary SA and m-sequence codes.  All data is for codes of 

length 31 with two codes per set.  Clearly, the polyphase code performance moves closer to the Sarwate 

bound as the number of phase values increase.  This provides strong evidence that the SA approach may 

yield near-optimum codes for NLS applications. 
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Figure 3-7.  Polyphase Coding:  Maximum Aperiodic Correlation Results for M = 2 Codes and   
TB = 31.  The Sarwate Bound Is Line On the Lower Left 

 

3.5 Mutually Dispersive Brown Codes 

Although not considered as an integral part of this research, the theory behind mutually dispersive 

Brown coding is presented for completeness.  Brown [38] has developed a mutually dispersive coding 

theory for generating optimal codes for NLS applications.  Brown’s approach for optimizing code selection 

is two-fold.  First, the optimum autocorrelation function is found using calculus of variations to minimize 

the root-mean-square time duration of Eq (1.16).  This process optimally yields a cosine taper, similar to 

techniques used in antenna sidelobe reduction. 

Secondly, the crosscorrelation properties of code families are optimized by defining phase-rate 

functions, obtained by taking the derivative of corresponding phase modulation functions in the frequency 

domain.  The phase-rate functions are optimized by finding M “hermits” in M-dimensional space, i.e., 

equidistant locations in the M-Dimensional solution space having maximum separation distance.  The 

hermit locations and an orthogonal basis are subsequently used to develop a set of optimal phase-rate 
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functions for obtaining a set of mutually dispersive codes.  The corresponding time domain codes are 

obtained by integrating the phase-rate functions and applying an inverse Fourier transform. 

Brown has designed generalized chirp (LFM) codes having linear frequency modulation over a 

specific range, but are nonlinear in general.  Practical implementation of Brown’s mutually dispersive 

codes is currently under investigation, with the technique possibly allowing for deterministic selection of 

optimal codes for future NLS applications. 
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4.  Performance of Nonlinear Suppression in Real Clutter 

4.1 Nonlinear Suppression of Ground Clutter 

General ground clutter characteristics for airborne radar applications were presented in Chapter 1.  

This chapter examines the effectiveness of NLS in suppressing ambiguous clutter.  For most airborne radar 

systems, ground clutter, rather than noise, is the limiting factor in target detection.  Most modern radar 

research, e.g., space-time adaptive processing (STAP), is concerned with improving clutter suppression.  

NLS is not envisioned as replacement for such techniques.  Rather, the primary role of NLS is viewed as 

one of augmentation and effectiveness enhancement.  In a high or medium PRF systems, where range 

ambiguities may be significant or severe, the NLS technique proposed here is expected to complement 

other clutter suppression techniques, further improving their performance by suppressing ambiguous clutter 

responses. 

Effective NLS performance requires discrimination of compressed pulse responses from dispersed 

pulse responses within each elemental suppression operation.  If for example, the clutter return is Gaussian 

distributed, perhaps due to the central limit theorem, the matched filter output is also Gaussian since 

matched filtering is inherently a linear operation. In this case, the compressed (focused) signal will be 

devoid of distinct “spikes” and subsequent hole punching will be ineffective.  Even for high range 

resolution radar, where the backscatter coefficient may have non-Gaussian distribution, such as a lognormal 

or Weibull distribution, the superposition of pulse responses from a large number of clutter cells may yet 

yield Gaussian clutter.   

The backscatter coefficient, though often modeled using a distribution function, is highly 

dependent upon many environmental factors, including, the homogeneity or nonhomogeneity of the 

medium, the angle of incidence, the surface roughness, the surface moisture, the vegetation type, the 

presence of ice or snow, and the presence of strong point scatterers [39:21-33].   

Ayasli [40] shows that even for a simple backscatter model such as the constant-γ model, 

propagation effects alone can explain the large spread in observed clutter strength and variations with 

respect to frequency.  Propagation effects result from the earth’s curvature and refraction, surface 

roughness, and multipath [41].  Ulaby [39:25-26], when demonstrating the angular dependence of the 
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backscatter coefficient for a random surface, divides the plot of backscatter vs. incidence angle into three 

regions: the quasi-specular region, the plateau region and the shadow region, with the latter being the least 

understood. 

Propagation effects may largely account for the nature of real clutter.  Given typical engagement 

geometry for an airborne radar system, mainbeam clutter often results from clutter cells at lower surface 

grazing angles (larger incidence angles).  This is the region where Ulaby’s “shadow region” is defined.  

Smith [42] shows that a shadowing function, dependent upon grazing angle, can be used to effectively 

model observed backscatter from rough surfaces.    

4.2 NLS Clutter Testing Methodology 

The primary objective of NLS clutter testing is to determine how effective the proposed NLS 

technique is at suppressing ambiguous clutter and to measure (quantify) the degree of suppression for 

various coding.    In support of this objective, an evaluation model for the hole-punching nonlinearity and 

various performance metrics were developed to quantify performance.  The measured clutter data used for 

performance evaluation was obtained from actual flight tests and was artificially prepared for NLS 

performance demonstration and characterization. 

4.2.1 NLS Performance Evaluation Model 

The evaluation model developed for NLS clutter suppression performance testing is shown in 

Figure 4-1.  For NLS testing, two distinct range intervals of clutter data are coded with unique pulse codes, 

one of the resulting signals is designated as the ambiguous signal (sA), and the other is designated as the 

unambiguous signal (sU).  This particular approach to performance testing is feasible because the 

ambiguous clutter situation is “artificially” created by uniquely encoding and folding-over measured data 

from two distinct range intervals – in a real-world situation, the ambiguous and unambiguous signals are 

completely inseparable. 
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Figure 4-1.  NLS Clutter Evaluation Model for Hole-Punching Nonlinearity 

 

As illustrated, the ambiguous and unambiguous signals are applied to matched filter, hm, which is 

matched to the ambiguous signal, sA.   Since the unambiguous data signal is known, a “near optimum” 

threshold is easily computed based solely on the dispersed signal response 

 [ ] [ ] [ ]U mn a s n h nα = ⋅ ∗  (4.1) 

where a is a scaling constant.  Once threshold α[n] is determined, the hole-punch operation may be 

independently applied to the unambiguous and ambiguous signals by creating a hole-punch vector, Vα, 

given by 

 
0 if [ ] [ ] [ ]                              
1 otherwise                              .                    

A Us n s n n
Vα

α + >
= 


 (4.2) 

Thus, the hole-punch vector Vα is a combination of ones and zeros with each zero location representing a 

specific signal component to be nulled.  Denoting element-by-element multiplication by , the ambiguous 

output, y

⊗

A, and unambiguous output, yU, are given by 

 ( ){ }[ ] [ ] [ ] [ ]A m A my n u V n s n h nα= ∗ ⊗ ∗  . (4.3) 

 ( ){ }[ ] [ ] [ ] [ ]U m U my n u V n s n h nα= ∗ ⊗ ∗  . 
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The combined output, which is equivalent to an operational NLS channel output (as opposed to the separate 

data “streams” created in the evaluation model for performance characterization), is given by 

 ( ) ( ){ }[ ] [ ] [ ] [ ] [ ] [ ] [ ]N m A m U my n u V n s n h n V n s n h nα α= ∗ ⊗ ∗ + ⊗ ∗  . (4.4) 

From the evaluation model, several useful performance evaluation metrics are created.  The first 

metric is a power ratio between the unambiguous output yU[n] and the ambiguous output yA[n], given by 
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Additional metrics for NLS performance testing requires implementing the model of Figure 4-1 in two 

different configurations.  The first configuration (normal configuration), as described above, uses the actual 

computed threshold value, i.e., T = α.  The second configuration uses an infinite threshold, T = ∞, which is 

equivalent to setting the hole-punch vector to all ones.  The infinite threshold configuration is used to 

produce an output that is “colored” by the filter responses – identical filter coloration as in the first 

configuration but without any suppression effects.  Several additional power ratios and a mean-square error 

(MSE) metric are computed using both configurations, as shown in Figure 4-2. 
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Figure 4-2.  Power Ratio and MSE Computations Using Scaled (T = α) and Infinite (T = ∞) 
Configurations 
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The Suppressed Power Ratio-Ambiguous (SPRA) is the ratio of ambiguous output power from the 

normal (T = α) configuration to ambiguous output power from the infinite (T = ∞) threshold configuration, 

expressed as 
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The SPRA represents the amount of ambiguous (undesired) power suppressed by the NLS operation. 

The Suppressed Power Ratio-Unambiguous (SPRU) is the ratio of unambiguous output power 

from the normal (T = α) configuration to unambiguous output power from the infinite (T = ∞) threshold 

configuration 
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The SPRU represents the amount of unambiguous (desired) power suppressed by the NLS operation. 

The MSE metric characterizes how much the suppressed output “looks like” the colored 

unambiguous output.  The error is derived from the combined output from the normal configuration, 

yN[n]|T = α, and the unambiguous output from the infinite configuration, yU[n]|T = ∞, as  
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where β is a scaling constant and C1 and C2 are bias constants. 

For analysis, the scaling constant for normal thresholding varies from 0.5 to 3.0 and Pu/Pa is 

computed.  The MSE is also computed as a function of the scaling constant.  The “best” scaling constant is 

determined as the value providing the maximum value of Pu/Pa.  The MSE, SPRA, and SPRU metrics are 

then determined using this value of the scaling constant. 
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4.2.2 Preparation of Real Clutter Data for NLS Processing 

Lacking an existing radar system capable of transmitting diverse-pulse waveforms, a method was 

sought for converting existing measured clutter data into diversely coded, ambiguous clutter data.  The real 

clutter data used in this work is from the Multi-Channel Airborne Radar Measurement (MCARM) Flight 

Test program.  Table 4-1 lists parameters of the MCARM program, including platform and radar 

parameters used for testing [43]. 

Table 4-1.  MCARM Parameters 

Parameter Value 
Aircraft Altitude 3.49 km 
Carrier Frequency 1.29 GHz 
Aircraft Ground Speed 100 m/s 
Array Type Side-Looking Linear Array 
Number of Elements 44 (11  Azimuth, 4 Elevation) 
Azimuth Element Spacing 0.1092 m 
Elevation Element Spacing 0.1407 m 
Azimuth Beamwidth 7.5 deg 
Elevation Beamwidth 23.6 deg 
Azimuth Pointing Angle 0.895 deg 
Elevation Pointing Angle 5 deg 
Number of Range Gates per PRI 630 
PRF 1984 Hz 
Pulse Width 50.8 µs 
Sample Time 0.8 µs 
Number of Pulses per CPI 128 

 

The MCARM data is stored in complex MATLAB format.  Each file consists of data collected 

over one CPI.  Since the MCARM data is primarily used for evaluating adaptive beamforming algorithms, 

the files include output data for 24 receiver channels, each of which corresponds to the output of different 

array sub-apertures.  Before using the data for NLS processing, eleven channels are coherently combined 

using appropriate steering vectors and Doppler processing is applied using a fast Fourier transform (FFT).   

Only the zero-Doppler data is used for this research since this case represents the majority of the clutter 

power received for a side-looking array. 

Each PRI of MCARM data consists of 630 complex samples.  The zero-Doppler channel output 

for one PRI of MCARM data is shown in Figure 4-3.  The exact nature of the large peak in the data near 
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the beginning of each PRI is uncertain.  However, this portion of the data is not processed and it is 

therefore inconsequential to ignore.  The sidelobe clutter response occurs in the first half of each PRI and is 

over 40 dB greater than the clutter response seen in the second half of the PRI.  Therefore, only the second 

half of each PRI is processed, as shown in Figure 4-4, yielding 315 complex samples for NLS processing 

and evaluation. 
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Figure 4-3.  Zero-Doppler Power of MCARM Clutter Data, Single PRI 
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Figure 4-4.  Zero-Doppler Power of MCARM Clutter Data, Second Half of PRI 
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The effect of Doppler processing prior to NLS is to reduce the cross-range resolution of the clutter 

cells.  The range and cross-range resolution of the MCARM data may be determined from the given 

parameters.  The range resolution is the length, in meters, of one range gate and is given by 

 120 m
2

scTR∆ = ≅  (4.9) 

where Ts is the sample time (0.8 µs) and c is the speed of light.  The cross-range resolution is found 

according to [44:445] and is given by 

 
2 sin(c k

ob k

R R
vT

λ
)β

∆ =  (4.10) 

where Rk and βk are the range and incidence angle to the kth clutter cell, v is the radar velocity, Tob is the 

coherent processing time, and λ is the wavelength.   The coherent processing  interval, as computed from 

data in Table 4-1, is (128 pulses)/(1984 Hz), or 64.5 ms.  The wavelength for a carrier frequency of  

1.29 GHz is 0.232 m.  The radar velocity is approximately 100 m/s.  The first sample in the data used for 

NLS testing is at n1 = 315 and the last sample is n2 = 630.  The ranges corresponding to these sample values 

(see Figure 4-5) are 
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with corresponding incidence angles of 
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 (4.12) 

where h is the radar altitude (3.49 km).  Applying these results to Eq (4.10) yields an approximate cross-

range resolution of 682.7 m at R1 and 1359.3 m at R2.  Even with Doppler processing, the clutter cells for 

this particular data set are very large and the received clutter response consists of reflections from a large 

number of scatterers. 
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Figure 4-5.  Ranges and Incidence Angles Corresponding to the First and Last Sample of the 
MCARM Data Used for NLS Testing 

4.2.3 Pulse Codes Used For NLS Clutter Tests 

Due to the small sample size of the MCARM data (315 samples), the codes used to evaluate NLS 

performance were limited to lengths of 31, 63 and 127.  Although a code with a length of 255 was 

considered, it was experimentally eliminated because it was determined that the edge effects, near the 

beginning and end of the data block, actually resulted in degraded performance.  A sampled LFM 

waveform was used to provide baseline performance of a “near optimum” (very low ISL levels) coding 

scheme and SA generated codes were tested for comparison.  The PSL, ISL and PCCL properties for all 

tested codes are provided in Table 4-2. 

Table 4-2.  Code Properties for Codes used in NLS Clutter Tests 

Code Length / Type PSL (dB) Max ISL (dB) PCCL (dB) 
31/LFM -21.3 -9.3 -14.6 
63 /LFM -24.3 -10.9 -17.6 

127 / LFM -27.4 -12.5 -20.6 
31/ 16-Phase SA -18.4 -3.3 -16.6 
63/ 16-Phase SA -21.3 -3.3 -18.9 

127/ 16-Phase SA -22.8 -2.9 -20.3 
 

As illustrated, the LFM codes possess excellent properties, especially very low ISLs for all three 

code lengths.  The LFM codes are actually very much like Frank codes, which are based on sampling the 

phase of step-chirp waveforms and have peak sidelobe levels near – 30 dB [45:10].  The SA codes were 
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specifically generated for optimum PSL and PCCL levels and thus have relatively poorer ISL levels.  The 

LFM and SA codes have a comparable PCCL.  

4.3 NLS Clutter Test Results 

Using the six LFM/SA codes described in the previous section, performance testing was 

conducted for input Pu/Pa ratios of 0.0, -3.0, and –6.0 dB.  Threshold scaling parameter a was varied from 

0.5 to 3.0 with the maximum value of Pu/Pa used to determine the “best” value of a.  The “best” value of a 

was used for calculating the MSE, the SPRA, and SPRU metrics.  Comprehensive performance results are 

provided in Table B-1 with plots of output Pu/Pa and MSE vs. scaling constant a provided in Figure B-1 

through B-36.  Representative results for each Pu/Pa case follows. 

4.3.1 Representative Performance Results for Input Pu/Pa of 0.0 dB 

For this case, the unambiguous and ambiguous input signal powers are equal.  Performance 

metrics are shown in Table 4-3. 

Table 4-3.  MCARM Test Results for Input Pu/Pa = 0.0 dB 

Coding 

Input 
Pu/Pa 
(dB) 

Output 
Pu/Pa 
(dB) 

Scaling 
Constant MSE 

SPRA 
(dB) 

SPRU 
(dB) 

31 LFM 0 3.7 1.24 0.659 -6.7 -2.8  
63 LFM 0 4.2 1.38 0.571 -6.2 -2.4  

127 LFM 0 5.5 0.99 0.702 -9.7 -4.7  
31-16 SA 0 4.4 1.41 0.530 -7.8 -2.1 
63-16 SA 0 3.0 1.21 0.638 -8.5 -4.2 

127-16 SA 0 5.1 1.51 0.410 -8.2 -3.2 

 

For all codes considered,  the improvement from input Pu/Pa to output Pu/Pa was at least 3.0 dB.  

The apparent trend is increasing Pu/Pa for increasing TB, except for the 63-16 SA code, which produced a 

lower Pu/Pa.  The amount of suppressed ambiguous clutter is reflected in the SPRA metric, which varied 

from –6.2 dB to –9.7 dB.  The amount of suppressed unambiguous clutter is reflected in the SPRU metric, 

which varied from -2.1 dB to -4.7 dB.  Effects of varying the scaling constant are clearly apparent; 
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lowering the threshold value (reducing a) resulted in greater suppression of both ambiguous and 

unambiguous clutter, while increasing a reduced the amount of total suppression. 

For comparison purposes, metric plots for the 127 LFM and 127-16 SA codes are provided in 

Figure 4-6 through Figure 4-9.  Although the maximum output Pu/Pa occurs for different threshold scaling 

constants, the resultant improvement is nearly 5.0 dB for both codes.  However, the MSE is significantly 

lower for the 127-SA codes due to the higher scaling constant for which maximum output Pu/Pa occurs. 
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Figure 4-6.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant   for Sampled LFM, 
TB = 127, Input Pu/Pa = 0.0 dB 
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Figure 4-7.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling  
Constant for Sampled LFM, TB = 127, Input P /Pa = 0.0 dB 
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Figure 4-8.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for 16-Phase SA 
Code, TB = 127, Input Pu/Pa = 0.0 dB 
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Figure 4-9.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling        
Constant for 16-Phase SA Code, TB = 127, Input Pu/Pa = 0.0 dB 

4.3.2 Representative Performance Results for Input Pu/Pa of –3.0 dB 

For this case, the unambiguous signal power is half of the ambiguous signal power.  The results 

are shown in Table 4-4. 

Table 4-4.  MCARM Test Results for Input Pu/Pa = -3.0 dB 

Coding 

Input 
Pu/Pa 
(dB) 

Output 
Pu/Pa (dB) 

Scaling 
Constant MSE 

SPRA 
(dB) 

SPRU 
(dB) 

31 LFM -3 2.1 1.28 0.801 -9.1 -3.8 
63 LFM -3 2.1 1.51 0.700 -7.5 -2.7 

127 LFM -3 4.0 1.27 0.652 -9.9 -3.2 
31-16 SA -3 3.1 1.33 0.676 -11.0 -3.9 
63-16 SA -3 1.8 0.86 0.884 -14.8 -8.7 

127-16 SA -3 3.1 1.2 0.642 -12.2 -6.1 

 

The trends are consistent with the previous case, although the maximum output Pu/Pa is smaller.  

However, the increase in Pu/Pa from input to output is larger.  For example, for the 127 LFM code, Pu/Pa 

increased from –3.0 dB to 4.0 dB, as opposed to the previous case, where it increased from 0 dB to 5.5 db.  

Furthermore, the SPRA is nearly the same, while the SPRU is somewhat larger, indicating less loss of 
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unambiguous clutter power.  The results for the 127-16 SA code were not as close to the 0 dB case as the 

127 LFM code.  Both the SPRA and the SPRU are at least –3 dB less than for the 0 dB Pu/Pa case.   

For comparison purposes, the plots for the 127 LFM and 127-16 SA codes are shown in  

Figure 4-10 through Figure 4-13.   
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Figure 4-10.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant   for Sampled 
LFM, TB = 127, Input Pu/Pa = -3.0 dB 
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Figure 4-11.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling       
Constant  for Sampled LFM, TB = 127, Input Pu/Pa = -3.0 dB 
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Figure 4-12.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant  for 16-Phase SA 
Code, TB = 127, Input Pu/Pa = -3.0 dB 
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Figure 4-13.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling       
Constant for 16-Phase SA Code, TB = 127, Input Pu/Pa = -3.0 dB 

 

4.3.3 Representative Performance Results for Input Pu/Pa of –6.0 dB 

For this case, the unambiguous signal power is one-fourth the ambiguous signal power.  

Performance results are shown in Table 4-5. 

Table 4-5.  MCARM Test Results for Input Pu/Pa = -6.0 dB 

Coding 

Input 
Pu/Pa 
(dB) 

Output 
Pu/Pa 
(dB) 

Scaling 
Constant MSE 

SPRA 
(dB) 

SPRU 
(dB) 

31 LFM -6 1.8 0.69 0.958 -19.4 -11.3 
63 LFM -6 2.8 0.50 0.977 -22.7 -14.1 

127 LFM -6 4.6 1.03 0.775 -16.1 -5.9 
31-16 SA -6 1.5 0.92 0.921 -16.4 -7.8 
63-16 SA -6 -0.2 1.36 0.931 -14.0 -6.7 

127-16 SA -6 1.8 1.32 0.785 -15.35 -7.5 

 

For the 127 LFM code, the Pu/Pa ratio increases from –6.0 dB on the input side to 4.6 dB on the 

output side using a scaling constant near one, as in previous cases.  This particular coding also provided the 

least amount of unambiguous clutter suppression, as indicated by the SPRU metric.  Overall, the SPRA and 
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SPRU metrics are much lower, indicating a trend that increasing the amount of ambiguous clutter power 

results in much greater suppression capability.  However, it should be noted that the maximum output Pu/Pa 

ratio does not dramatically decrease, remaining within 4.0 dB of previous cases. 

For comparison purposes, the plots for the 127 LFM and 127-16 SA codes are shown in  

Figure 4-14 through Figure 4-17.   
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Figure 4-14.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant                    
for Sampled LFM, TB = 127, Input Pu/Pa = -6.0 dB 
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Figure 4-15.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling       
Constant for Sampled LFM, TB = 127, Input Pu/Pa = -6.0 dB 
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Figure 4-16.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant  for 16-Phase SA 
Code, TB = 127, Input Pu/Pa = -6.0 dB 
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Figure 4-17.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling       
Constant for 16-Phase SA Code, TB = 127, Input Pu/Pa = -6.0 dB 

 

 

In general, even though the cross-range resolution dictated by the MCARM data set is relatively 

large, resulting in relatively large clutter cell sizes, the proposed NLS technique is effective at suppressing 

ambiguous clutter for the various input power ratios.  Even when the ambiguous clutter power was four 

times the unambiguous power, an output Pu/Pa of 4.6 dB was achieved (for the 127 LFM code).  Although 

the SA codes did not perform quite as well as the LFM codes, they exhibited the same basic trends and 

effectively suppressed the ambiguous clutter.  The excellent ISL levels provided by the LFM codes and 

their demonstrated suppression performance, clearly indicates the importance of autocorrelation sidelobe 

properties on clutter suppression effectiveness.   
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5.  Conclusion and Recommendations 

5.1 Summary and Contributions 

This work successfully expanded the knowledge base associated with using nonlinear suppression 

(NLS) techniques to enhance airborne, pulsed Doppler radar performance.  Specifically, the research focus 

was on development and employment of NLS techniques to minimize range/Doppler ambiguity while 

providing effective clutter suppression.  This work extends the NLS concept by focusing on discrete coding 

techniques providing both intrapulse (pulse to pulse) and interpulse (within the pulse) radar waveform 

modulation – previous work on analog implementations provided the technical foundation and impetus for 

the research. 

The theory of NLS was developed, starting with the pulse diversity work of Guey, Bell, and 

others.  For the common situation when target Doppler and delay are unknown, the ideal suppression 

operator (ISO) was introduced as a means of exploiting pulse diversity when the diverse codes are not truly 

orthogonal.  Nonlinear suppression (NLS) was defined along with its various elements and the dispersed 

envelope thresholding (DET) technique introduced.  The DET facilitated defining a suppressed correlation 

function consisting only of autocorrelation function sidelobes.  In Theorem 2, it was shown that nonlinear 

suppression approaches ideal suppression as the integrated sidelobe level (ISL) approaches zero – 

indicating a primary dependence upon the autocorrelation sidelobe characteristics rather than restricting 

usable code families to ones containing orthogonal code sets.   

Several discrete code families were examined, including m-sequences and Gold codes, and it was 

concluded that neither are ideally suited for radar NLS application – each exhibited relatively poor 

aperiodic performance relative to their traditional role in periodic coding applications such as 

communications.  New code families were generated based using a Simulated Annealing (SA) technique.  

The algorithm developed yields both binary and polyphase codes having highly desirable (lower) peak 

correlation properties – their demonstrated performance was much closer to the Sarwate bound than either 

the m-sequences or Gold codes considered.   

5-1 



 

Two specific thresholding schemes were developed and analyzed, including the reserved code and 

dispersed code threshold.  Most notable, the newly proposed reserved code thresholding technique is a 

relatively simple and efficient means for estimating the envelope (or shape) of the dispersed signal.  

Reserved code thresholding involves “reserving” (not transmitting) one code from the available family of 

codes – the matched filter, dispersed response of this code with the received data (consisting of 

target/clutter responses from all other codes) is used to establish appropriate threshold characteristics.  For 

point targets, it was demonstrated that the threshold yielding the minimum mean-square error (MMSE) 

effectively tracks the dispersed envelope. 

Finally, NLS performance was characterized using real airborne clutter data.  Although the 

available measured data set was severely limited and not optimal for NLS testing, i.e., the data was of 

limited duration and not collected using a diverse-pulse radar having both intra-/interpulse modulation, the 

proposed NLS technique was effective at mitigating ambiguous clutter even though the clutter cells were 

relatively large – discretely coded NLS results were consistent with baseline analog LFM performance.  

Performance improvement a result of increasing time-bandwidth product and using codes with better ISL 

levels was also demonstrated.   For “sparse impulsive clutter”, resembling a collection of point targets, the 

degree of suppression may be made arbitrarily large by selecting codes with large time-bandwidth products 

and mutually dispersive cross-correlation characteristics.  It is not clear, from the demonstration using the 

limited MCARM data set, exactly what the achievable NLS effectiveness is for distributed clutter.   

5.2 Directions for Future Research 

The first recommendation for future NLS research is to obtain measured clutter data with diverse-

pulse radar.  Ideally, the data would be collected on an airborne platform and provide various degrees of 

controllable ambiguity.  The test radar should be designed to accommodate large time-bandwidth products 

and minimal pre-processing prior to data sampling and storage, as necessary to allow various NLS 

configurations to be effectively tested. 

The second recommendation is to develop an implementation model for evaluating several NLS 

architectures.  Examples include applying Doppler pre-processing and independently applying NLS to each 

Doppler channel.  The impact of pulse diversity on Doppler processing needs to be assessed, specifically 

the ability of the Doppler filter bank to suppress clutter when the pulses are not identical.  It has been 
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observed that some additional ambiguity is introduced in Doppler by repeating every mth pulse.  The 

severity and impact of this ambiguity on NLS processing should be determined. 

The simulated annealing (SA) technique proved very effective for developing good NLS pulse 

codes.  For shorter code lengths, very good candidate codes were obtained.  However, for longer codes the 

algorithm convergence time to a global minimum becomes excessive, even on fast computers.  A potential 

SA enhancement that has received some attention in the literature is Quantum Annealing (QA).  The QA 

technique incorporates a “tunneling” algorithm into the annealing process and may provide faster 

convergence times.   

Finally, discrete implementation of developmental analog codes, such as Brown codes, may hold 

the key for providing near optimum codes for NLS applications.  A deterministic approach to optimum 

coding could provide a vital tool for greatly enhancing NLS implementation and transition.  Looking 

beyond the NLS focus of this research, both the discrete SA codes and the analog Brown codes have great 

potential in multi-user and low probability-of-intercept (LPI) radar applications.  Likewise, these codes 

may be beneficial in communication, navigation, and sensor applications as well. 
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Appendix A  Notations and Conventions 

 

A.1 Symbols for Waveform Parameters 

Unless otherwise noted, the following symbols are used consistently throughout the text. 

Table A-1: Symbols for Waveform Parameters 

Parameter Notation 
Time t 
Frequency f (Hz) or ω (rad) 
Amplitude A 
Power or Probability P 
Time Delay τ 
Doppler Shift ν 
Pulse Repetition Interval (PRI) Tr 
Pulse Repetition Frequency (PRF) fr 
Pulse Width Tp 
Number of Pulses in CPI N 
Coherent Processing Interval (CPI) Tcoh 
Wavelength of Carrier λ 
Frequency of Carrier f0 
Sampling Interval Ts 
Energy E 
General Signal s(t) 
Analytic Signal ψ(t) 
Complex Envelope µ(t) 
Velocity v 
Phase φ 
Range R 

 

A.2 Complex Envelope Notation 

The radars of interest in this analysis are “narrowband”, loosely defined as a system where the 

signal bandwidth is much less than the carrier frequency.  The receiver radio frequency (RF) section 

typically down-converts, via mixing, the incoming signal to a much lower intermediate frequency (IF), 

perhaps in several stages.  The IF signal is then filtered with a bandpass IF filter designed to pass all signals 

of interest.  Following IF filtering, the signal is converted to baseband In-phase (I) and Quadrature (Q) 

components and sampled.  The baseband I and Q signals represent the complex envelope of the received 

 A−1



 

waveform.  This complex waveform carries all information of interest to the radar signal processor.  The 

complex envelope is used throughout this text. The real-valued transmit signal may be represented by 

 0( ) ( ) cos 2 ( )s t a t f t tπ φ = +   (A.1)  

where a(t) is the amplitude modulation function, such as a Gaussian pulse or rectangular pulse train, f0 is 

the carrier frequency and φ(t) is a phase modulation function.  The transmit signal spectrum S(f) is found 

using the Fourier Transform relation 

 2( ) ( ) j f ts t S f e π
∞

−∞

= ∫ df

t

 (A.2) 

  S f s∫  . (A.3) 2( ) ( ) j f tt e dtπ
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−∞

=

The complex signal, often called the analytic signal, is given by 

ˆ( ) ( ) ( )t s t j sψ = +  (A.4) 

where ( )s t and ˆ( )s t are related by the Hilbert transform 
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An interesting property of the complex signal is that its spectrum is zero for negative frequencies 

2 ( ) 0
( )

0 0
S f f

f
f

≥
Ψ =  <

 (A.7) 

The real-valued transmit signal is related to the complex signal by 

{ }( ) Re ( )s t tψ=  . (A.8) 

A sinusoidal signal represented by Eq (A.1) has a complex signal given by 

02 (( ) ( ) )j f t tt a t e π φψ +=  . (A.9) 

Equation (A.9) illustrates the utility of working with complex notation, i.e., the convenience of 

working with exponential notation rather than trigonometric functions.  Equation (A.9) may also be 

represented in terms of its complex envelope µ(t) 
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 02( ) ( ) j f tt t e πψ µ=  (A.10) 

where ( )( ) ( ) j tt t e ϕµ µ=  . (A.11) 

For narrowband signals represented by Eq (A.9), it is a valid approximation [20] to let 

( ) ( )t a tµ =  and ( ) ( )t tϕ φ=  so that the complex envelope of the real signal of Eq (A.1) becomes 

( )( ) ( ) j tt a t e φµ =  . (A.12) 

The complex envelope spectrum of µ(t) is given by the Fourier Transform 

  (A.13)  2( ) ( ) j f tt M f e πµ
∞

−∞

= ∫ df

 2( ) ( ) j f tM f t e πµ
∞

−

−∞

= ∫ dt  . (A.14) 

The complex envelope spectrum may also be represented by 

( )( ) ( ) j fM f M f e θ=  . (A.15) 

Signal energy (E) may be calculated from the real-valued signal, the complex signal, or the time 

signal, according to the following 
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A.3 The Radar Range Equation 

There are many forms of the radar range equation for calculating the power received from a target.  

The following form is used here 
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The target return amplitude may be found from 2 rA P=  so that the return amplitude is 
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A.4 Continuous and Discrete Correlation Functions 

Given the diverse definitions of correlation function found in the literature, it is important to 

establish a definition for use throughout this dissertation. 

A.4.1 Fundamental  Definitions and Properties 

Definition A.1 (Deterministic Cross-Correlation Function).   Let x(t) and y(t) be two complex functions 

and let t be a real variable.  The Deterministic Cross-Correlation Function Rxy (τ) is defined as 

 . (A.19) ( ) ( ) ( )xyR x t y tτ τ
∞

∗

−∞

= +∫ dt

From Definition A.1, several important properties may be derived 

 *( ) ( )xy yxR Rτ τ− =  (A.20) 

 * ( ) ( )xy yxR Rτ τ= −  (A.21) 

  R R* ( ) ( )xy yxτ τ− =  . (A.22) 

The Deterministic Autocorrelation Function, Rxx (τ), is simply the cross-correlation of x(t) with itself per 

Eq (A.19). 
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For pulsed radar applications, the primary interest is in the correlation characteristics of 

rectangular pulse functions.  Let un(t) be a pulse function with amplitude modulation a(t), phase modulation 

φn(t), and duration Tp .  Then 

 ( )( ) ( ) nj t
nu t a t e φ=  (A.23) 

where 

  (A.24) 
1 0     

( )
0 otherwise   .

pt T
a t

≤ ≤
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From Eq (A.19), the Cross-Correlation Function R01(τ) of two pulses, u0 (t) and u1 (t) is 
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A.4.2 Discrete Correlation Functions 

When pulse functions are discrete, they may be represented as a sequence of elemental pulses and 

expressed as 

  (A.26) 
1

0

( ) ( )
N

n j
j

u t a t jTϕ
−

=

= −∑

where aj is a complex number, Tc  is the elemental pulse duration, N is the number of elemental pulses 

(“chips”) in un(t), and the elemental pulse function is defined as 

  (A.27) 
1  0     

( )
0 otherwise  .

ct T
tϕ

≤ ≤
= 



Representing two sequences un(t) and um(t) using Eq (A.26), with um(t) given by,  

  (A.28) 
1

0

( ) ( )
N

m j
j

u t b t jTϕ
−

=

= −∑

and assuming delay τ is an integer multiple of Tc, τ = l·Tc, results in a Cross-Correlation Function for un(t) 

and um(t) of the form  
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 . (A.29) ( ) ( ) ( )nm n m cR u t u t l Tτ
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t dtϕ⋅

Suppose that τ < 0, which implies that 1 – N £  l < 0.  Then  
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Using the change of variables, t′ = t - kTc, Eq (A.30) becomes 

  . (A.31) [ ]( ) ( )
1 1
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Equation (A.31) is nonzero only when the elemental pulses in the integral overlap, i.e., for j = k – l, and 

may be rewritten as 
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∗
−

= −
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 . (A.32) 

Since τ < 0 and  1 – N  £  l < 0, then am-l  =  0 for k > N - 1 + l.  As written, the integral term in Eq (A.32) is 

the elemental pulse energy which can be assumed, without loss of generality, to be unity.  By applying the 

same procedure for τ ≥ 0, the Cross-Correlation Function for Discretely-Coded Pulses becomes 

 
1

0
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N l
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− +

∗
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=

= < = ⋅∑  (A.33) 

   R a
1

0

( ) 0,  
N l

nm k k l c
k

bτ τ
− −

∗
+

=

l Tτ= > = ⋅∑   . (A.34) 

 

From Eq (A.33) and Eq (A.34) results, it is possible to specify the correlation properties of any 

two discrete codes x and y by defining the Discrete Aperiodic Crosscorrelation Function, Cxy (l). 
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Definition A.2 (Discrete Aperiodic Crosscorrelation Function) [28:610].   Let x and y be two complex 

sequences of length N.  The Discrete Aperiodic Crosscorrelation Function Cxy (l) is defined by 
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∑  (A.35) 

Some fundamental properties of discrete aperiodic cross-correlation functions include  

  (A.36) ( ) ( )xy yxC l C l∗− =

 ( ) ( )xy yxC l C l∗ = −  (A.37) 

         . (A.38) ( ) ( )xy yxC l C l∗ − =

These parallel the deterministic cross-correlation properties of Eqs (A.20) thru (A.22).  The importance of 

discrete aperiodic cross-correlation functions is readily apparent when τ = lTc, since the cross-correlation of 

any two pulses is determined from the discrete aperiodic correlation of complex sequences forming the 

pulse codes.  For an arbitrary delay, i.e., τ π lTc, the cross-correlation function Rxy (τ) may still be 

determined from Cxy(l) [28:594].  For this research, it is assumed that τ = lTc for all cases.  Unless otherwise 

specified, the discrete aperiodic cross-correlation function is referred to as the aperiodic correlation 

function and the discrete case is assumed. 

The Normalized Aperiodic Correlation Function is often used in analysis.  It is merely the 

aperiodic correlation function divided by the code length N. 

Definition A.3 (Normalized Discrete Aperiodic Crosscorrelation Function).    Let x and y be two 

complex sequences of length N.  The Normalized Discrete Aperiodic Cross-Correlation Function qxy (l) is 

defined by 
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The aperiodic correlation function is useful when evaluating pulse diverse radar performance.  

Much research has been accomplished on code families yielding good periodic (full-period) cross-

correlation properties.  However, these same code families often possess poor aperiodic cross-correlation 

characteristics.  Although the distinction between periodic and aperiodic cross-correlation may appear 

unimportant at first, it is important for this work because, unlike many communication system applications 

which rely on favorable aperiodic cross-correlation performance, each coded radar pulse normally contains 

a single code period.  Thus, radar receiver performance is generally based on aperiodic correlation results. 

A.5 Matched Filtering 

A Matched Filter, also known as the North Filter, is a well-known “optimal” filter for signals 

operating over a white noise channel under several criteria [46].  

Definition A.3 (Matched Filter) [46:353].   Let s(t) be a complex signal and let t be a real variable.  The 

Matched Filter, h,  is defined as the filter with impulse response 

 ( ) ( )h t ks T t∗= −  (A.40) 

where k and T are arbitrary real constants.  The transfer function for matched filter h(t) is given by 

 2( ) ( ) j fTH f k S f e π∗ −=  (A.41) 

where S(f) is the Fourier Transform of s(t). 

Constants k and T simply represent scaling and delay, respectively, and may be conveniently 

ignored.  An important matched filter property involves its relationship to the correlation function.  Let y(t) 

= s(t) * h(t) where * denotes convolution and h(t) is a matched filter for s(t).  The matched filter output is 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )  .ss ss

y t s t h t s t s t

s s t d s t s d

R t R t

λ λ λ λ λ

∗

∞ ∞
∗

−∞ −∞

∗

= ∗ = ∗ −

= − = +

= = −

∫ ∫ λ∗  (A.42)  
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Thus, matched filtering performance can be directly obtained through correlation.  Consider two 

pulse functions u0(t) and u1(t) and let s(t) = u0(t) + u1(t).  By applying s(t) to matched filters h0(t) and h1(t), 

and utilizing appropriate convolution properties, the filter outputs can be expressed as 

  (A.43) 
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 (A.44) 

Sequential application of multiple matched filters is important for NLS analysis.  Figure A-1 

shows a sequential matched filtering process.  The second filter is not a matched filter but has a transfer 

function equal to the previous filter’s conjugate. 

h0 h1u0h0 h1u0

h1 h0u1h1 h0u1

s(t)

s(t)

y0(t)

y1(t)

 

Figure A-1.  Sequential Matched Filter Processing 

Using s(t) from the previous example, outputs y0 and y1 are found from 
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 (A.46) 

Due to the fundamental relationship between matched filtering and correlation, the cross-

correlation and autocorrelation properties are sufficient for determining performance of any pulse codes.  

For radar applications involving discrete codes, the aperiodic correlation function is used.  
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Appendix B MCARM Clutter Test Results 

For conciseness and clarity, only the Pu/Pa and MSE metric plots for code lengths of 127 were 

presented in Chapter 4.  This appendix provides metric plots for all tested code lengths.  Table B-1 lists the 

basic metrics corresponding to the maximum Pu/Pa. 

Table B-1.  MCARM Clutter Test Results 

Coding 
Input 

Pu/Pa (dB) 
Output Pu/Pa 

(dB) 
Scaling 

Constant MSE 
SPRA 
(dB) 

SPRU 
(dB) 

31 LFM 0.0 3.7 1.24 0.659 -6.7 -2.8  
63 LFM 0.0 4.2 1.38 0.571 -6.2 -2.4  

127 LFM 0.0 5.5 0.99 0.702 -9.7  -4.7  
31-16 SA 0.0 4.4 1.41 0.530 -7.8 -2.1 
63-16 SA 0.0 3.0 1.21 0.638 -8.5 -4.2 

127-16 SA 0.0 5.1 1.51 0.410 -8.2 -3.2 
31 LFM 0.0 2.1 1.28 0.801 -9.1 -3.8 
63 LFM -3.0 2.1 1.51 0.700 -7.5 -2.7 

127 LFM -3.0 4.0 1.27 0.652 -9.9 -3.2 
31-16 SA -3.0 3.1 1.33 0.676 -11.0 -3.9 
63-16 SA -3.0 1.8 0.86 0.884 -14.8 -8.7 

127-16 SA -3.0 3.1 1.2 0.642 -12.2 -6.1 
31 LFM -6.0 1.8 0.69 0.958 -19.4 -11.3 
63 LFM -6.0 2.8 0.50 0.977 -22.7 -14.1 

127 LFM -6.0 4.6 1.03 0.775 -16.1 -5.9 
31-16 SA -6.0 1.5 0.92 0.921 -16.4 -7.8 
63-16 SA -6.0 -0.2 1.36 0.931 -14.0 -6.7 

127-16 SA -6.0 1.8 1.32 0.785 -15.35 -7.5 
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Figure B-1.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for Sampled LFM, 
TB = 31, Input Pu/Pa = 0.0 dB 
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Figure B-2.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant for Sampled LFM, TB = 31, Input Pu/Pa = 0.0 dB 
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Figure B-3.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for Sampled LFM, 
TB = 63, Input Pu/Pa = 0.0 dB 
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Figure B-4.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant for Sampled LFM, TB = 63, Input Pu/Pa = 0.0 dB 
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Figure B-5.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for Sampled LFM, 
TB = 127, Input Pu/Pa = 0.0 dB 
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Figure B-6.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant for Sampled LFM, TB = 127, Input Pu/Pa = 0.0 dB 
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Figure B-7.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for 16-Phase SA 
Code, TB = 31, Input Pu/Pa = 0.0 dB 
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Figure B-8.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant for 16-Phase SA Code, TB = 31, Input Pu/Pa = 0.0 dB 
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Figure B-9.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for 16-Phase SA 
Code, TB = 63, Input Pu/Pa = 0.0 dB 
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Figure B-10.  MSE between NLS Channel Output and Colored Unambiguous Output vs.  Scaling 
Constant for 16-Phase SA Code, TB = 63, Input Pu/Pa = 0.0 dB 
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Figure B-11.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for 16-Phase SA 
Code, TB = 127, Input Pu/Pa = 0.0 dB 
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Figure B-12.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant for 16-Phase SA Code, TB = 127, Input Pu/Pa = 0.0 dB 
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Figure B-13.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for Sampled LFM, 
TB = 31, Input Pu/Pa = -3.0 dB 
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Figure B-14.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant Sampled LFM, TB = 31, Input Pu/Pa = -3.0 dB 
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Figure B-15.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for Sampled LFM, 
TB = 63, Input Pu/Pa = -3.0 dB 
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Figure B-16.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant Sampled LFM, TB = 63, Input Pu/Pa = -3.0 dB 
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Figure B-17.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for Sampled LFM, 
TB = 127, Input Pu/Pa = -3.0 dB 
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Figure B-18.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant  for Sampled LFM, TB = 127, Input Pu/Pa = -3.0 dB 
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Figure B-19.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for 16-Phase SA 
Code, TB = 31, Input Pu/Pa = -3.0 dB 
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Figure B-20.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant for 16-Phase SA Code, TB = 31, Input Pu/Pa = -3.0 dB 
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Figure B-21.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for 16-Phase SA 
Code, TB = 63, Input Pu/Pa = -3.0 dB 

 

0.5 1 1.5 2 2.5 3
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Scaling Constant (a)

M
SE

 

Figure B-22.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant for 16-Phase SA Code, TB = 63, Input Pu/Pa = -3.0 dB 
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Figure B-23.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for 16-Phase SA 
Code, TB = 127, Input Pu/Pa = -3.0 dB 
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Figure B-24.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant for 16-Phase SA Code, TB = 127, Input Pu/Pa = -3.0 dB 
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Figure B-25.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for Sampled LFM, 
TB = 31, Input Pu/Pa = -6.0 dB 
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Figure B-26.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant for Sampled LFM, TB = 31, Input Pu/Pa = -6.0 dB 
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Figure B-27.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for Sampled LFM, 
TB = 63, Input Pu/Pa = -6.0 dB 
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Figure B-28.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant for Sampled LFM, TB = 63, Input Pu/Pa = -6.0 dB 
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Figure B-29.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for Sampled LFM, 
TB = 127, Input Pu/Pa = -6.0 dB 
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Figure B-30.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant for Sampled LFM, TB = 127, Input Pu/Pa = -6.0 dB 
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Figure B-31.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for 16-Phase SA 
Code, TB = 31, Input Pu/Pa = -6.0 dB 
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Figure B-32.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant for 16-Phase SA Code, TB = 31, Input Pu/Pa = -6.0 dB 
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Figure B-33.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for 16-Phase SA 
Code, TB = 63, Input Pu/Pa = -6.0 dB 
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Figure B-34.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant for 16-Phase SA Code, TB = 63, Input Pu/Pa = -6.0 dB 
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Figure B-35.  Unambiguous/Ambiguous Output Power Ratio vs. Scaling Constant for 16-Phase SA 
Code, TB = 127, Input Pu/Pa = -6.0 dB 
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Figure B-36.  MSE between NLS Channel Output and Colored Unambiguous Output vs. Scaling 
Constant for 16-Phase SA Code, TB = 127, Input Pu/Pa = -6.0 dB 
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